Overproduction of reactive oxygen species (ROS) and alterations in metallostasis are common and related hallmarks in several neurodegenerative diseases (NDDs). Nature-based derivatives always represent an attractive tool in MTDL drug design, especially against ROS in NDDs. On this notion, we designed a new series of 8-quinoline-N-substituted derivatives with a natural antioxidant portion (i.e., lipoic, caffeic, and ferulic acids). These compounds were shown to chelate copper, a metal involved in ROS-induced degeneration, and scavenger oxygen radicals in DPPH assay. Then, selected compounds and were evaluated in an in vitro model of oxidative stress and shown to possess cytoprotective effects in 661W photoreceptor-like cells. The obtained results may represent a starting point for the application of the proposed class of compounds in retinal neurodegenerative diseases such as retinitis pigmentosa (RP), comprising a group of hereditary rod-cone dystrophies that represent a major cause of blindness in patients of working age, where the progression of the disease is a multifactorial event, with oxidative stress contributing predominantly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229476 | PMC |
http://dx.doi.org/10.3390/ph15060688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!