AI Article Synopsis

  • * Analysis of 45 samples revealed that indicators like Salmonella were below legal limits, but enteric viruses and contaminants of emerging concern were still present in various levels.
  • * Findings indicated that the porous vadose zone effectively reduced contaminants more than the fractured karst vadose zone, suggesting the need for updated legislation to include additional safety parameters for treated effluents.

Article Abstract

This study evaluated whether some chemical and microbial contaminants in treated sewage effluents from two wastewater treatment plants (WWTP) reached the groundwater when they drained through a fractured karst vadose zone (WWTP-K) and a porous vadose zone (WWTP-P). Forty-five samples of sewage water (SW), treated water (TW), and monitoring well (MW), collected from WWTP-P (24) and WWTP-K (21), were analyzed for a range of microbiological and chemical properties. The and Salmonella counts were below the limits outlined in the Legislative Decree 152/06 in effluents from both types of WWTP. Enteric viruses were found in 37.5% and 12.5% of the SW and TW from WWTP-P, respectively. The percentages of Pepper mild mottle virus isolated were higher in TW (62.5% in WWTP-P, 85.7% in WWTP-K) than in SW and MW. The residual concentrations of contaminants of emerging concern (CEC) of each drug category were higher in the MW downstream of WWTP-K than of WWTP-P. Our results showed that the porous vadose zone was more effective at reducing the contaminant loads than the fractured karst one, especially the CEC, in the effluent. The legislation should include other parameters to minimize the risks from treated effluent that is discharged to soil.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228818PMC
http://dx.doi.org/10.3390/pathogens11060677DOI Listing

Publication Analysis

Top Keywords

vadose zone
16
fractured karst
8
porous vadose
8
wwtp-p
5
geological characteristics
4
vadose
4
characteristics vadose
4
zone
4
zone influence
4
influence impact
4

Similar Publications

Mine tailing deposits pose a global problem, as they may contain metal contaminants in various geochemical forms and are likely to be leached from the surface into the underlying groundwater, which can result in health and/or environmental risks. Unfortunately, little is currently known regarding the water flow and mass balance related to leaching in the vadose zone as these factors are still difficult to measure at the field scale. A pilot-scale experiment was run in a 1 m instrumented column for 6 months to address this issue.

View Article and Find Full Text PDF

Global Groundwater Carbon Mass Flux and the Myth of Atmospheric Weathering.

Ground Water

January 2025

Seafloor Science Branch, US Naval Research Laboratory, NRL Code 7432, Stennis Space Center, Hancock County, MS, 39529.

Our recent steady-state mass-balance modeling suggests that most global carbonic-acid weathering of silicate rocks occurs in the vadose zone of aquifer systems not on the surface by atmospheric CO. That is, the weathering solute flux is nearly equal to the total global continental riverine carbon flux, signifying little atmospheric weathering by carbonic acid. This finding challenges previous carbon models that utilize silicate weathering as a control of atmospheric CO levels.

View Article and Find Full Text PDF

Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate.

Vadose Zone J

May 2024

Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Ada, Oklahoma, USA.

A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO ). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate ( N-NO and O-NO ) and water ( O-HO and H-HO) to understand the mechanisms driving nitrate leaching at three depths (0.

View Article and Find Full Text PDF

Infiltration depth, rooting depth, and regolith flushing-A global perspective.

PNAS Nexus

December 2024

CRETUS, Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Galicia 15782, Spain.

In the vegetation root zone, infiltration () parts in two directions with distinct Earth-system functions. One goes up as evapotranspiration ( + ), returning to the atmosphere (short-circuiting) and affecting short-term weather/climate and the carbon cycle. The other goes down as deep drainage (), flushing the regolith, mobilizing nutrients/contaminates and dissolved minerals into aquifers and rivers, eventually reaching the ocean (long-circuiting) thus regulating global biogeochemical cycles and long-term climate.

View Article and Find Full Text PDF

Seasonal water level fluctuations in rivers significantly influenced the cross-media migration, transformation, and risk diffusion of antibiotics from the vadose zone into groundwater. This study developed a coupled model integrating machine learning (ML) with HYDRUS-3D and GMS to accurately predict sulfamethazine migration under dynamic water levels. The predictive accuracy (E≥0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!