Three porous aluminium benzene-1,3,5-tricarboxylates MIL-96(Al), MIL-100(Al) and MIL-110(Al) materials were studied for their hydrothermal stability. The 40-cycles water vapour sorption experiments for the three samples were performed by varying the temperature between 40 and 140 °C at 75% relative humidity to simulate working conditions for materials used in water sorption-based low-T heat storage and reallocation applications. The materials were characterized by powder X-ray diffraction, N physisorption, and Nuclear Magnetic Resonance and Infrared spectroscopies before and after the cycling tests. The results showed that the structure of MIL-110(Al) lost its crystallinity and porosity under the tested conditions, while MIL-96(Al) and MIL-100(Al) exhibited excellent hydrothermal stability. The selection of structures, which comprise the same type of metal and ligand, enabled us to attribute the differences in stability primarily to the known variances in secondary building units and the shielding of potential water coordination sites due to the differences in pore accessibility for water molecules. Additionally, our results revealed that water adsorption and desorption at tested conditions (T, RH) is very slow for all three materials, being most pronounced for the MIL-100(Al) structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231181 | PMC |
http://dx.doi.org/10.3390/nano12122092 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxue East Road, Nanning, Guangxi, 530004, China.
Two dipicolylamine (DPA) derivatives with the pyrene and anthracene groups, 1-(pyren-1-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L1) and 1-(anthracen-9-yl)-N, N-bis-(pyridine-2-ylmethyl)benzylamine (L2) were synthesized, characterized, and their affinitive properties for metal ions were studied. The mass spectroscopy and Job's plots showed that L1 and L2 reacted with Cu and formed complexes [Cu(L1)(solvent)] (L1-Cu) and [Cu(L2)(solvent)] (L2-Cu), respectively. Both L1 and L2 were fluorescent probes recognizing Cu via the emission quenching and further detecting HS via the emission revival.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.
View Article and Find Full Text PDFLangmuir
January 2025
Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China.
Self-cleaning applications based on bionic surface designs requires an in-depth understanding of unique and complex wetting and evaporation processes of sessile droplets on natural biosurfaces. To this end, hydrophobic bamboo and Kalanchoe blossfeldiana leaves are excellent candidates for self-cleaning applications, but various properties, such as the heat and mass transfer processes during evaporation, remain unknown. Here, the dynamics of contact angle, radius, and heat and mass transfer during evaporation of sessile droplets on bamboo and Kalanchoe blossfeldiana leaves with roughness in the range 2.
View Article and Find Full Text PDFMater Horiz
January 2025
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!