A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multifunctional Hybrid MoS-PEGylated/Au Nanostructures with Potential Theranostic Applications in Biomedicine. | LitMetric

In this work, flower-like molybdenum disulfide (MoS) microspheres were produced with polyethylene glycol (PEG) to form MoS-PEG. Likewise, gold nanoparticles (AuNPs) were added to form MoS-PEG/Au to investigate its potential application as a theranostic nanomaterial. These nanomaterials were fully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), photoelectron X-ray spectroscopy (XPS), Fourier-transformed infrared spectroscopy (FTIR), cyclic voltammetry and impedance spectroscopy. The produced hierarchical MoS-PEG/Au microstructures showed an average diameter of 400 nm containing distributed gold nanoparticles, with great cellular viability on tumoral and non-tumoral cells. This aspect makes them with multifunctional characteristics with potential application for cancer diagnosis and therapy. Through the complete morphological and physicochemical characterization, it was possible to observe that both MoS-PEG and MoS-PEG/Au showed good chemical stability and demonstrated noninterference in the pattern of the cell nucleus, as well. Thus, our results suggest the possible application of these hybrid nanomaterials can be immensely explored for theranostic proposals in biomedicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227389PMC
http://dx.doi.org/10.3390/nano12122053DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
potential application
8
electron microscopy
8
multifunctional hybrid
4
hybrid mos-pegylated/au
4
mos-pegylated/au nanostructures
4
nanostructures potential
4
potential theranostic
4
theranostic applications
4
applications biomedicine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!