Poplar bark and leaves can be an attractive source of salicylates and other biologically active compounds used in medicine. However, the biochemical variability of poplar material requires a standardization prior to processing. The official analytical protocols used in the pharmaceutical industry rely on the extraction of active compounds, which makes their determination long and costly. An analysis of plant materials in their native state can be performed using vibrational spectroscopy. This paper presents for the first time a comparison of diffuse reflectance in the near- and mid-infrared regions, attenuated total reflection, and Raman spectroscopy used for the simultaneous determination of salicylates and flavonoids in poplar bark and leaves. Based on 185 spectra of various poplar species and hybrid powdered samples, partial least squares regression models, characterized by the relative standard errors of prediction in the 4.5-9.9% range for both calibration and validation sets, were developed. These models allow for fast and precise quantification of the studied active compounds in poplar bark and leaves without any chemical sample treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229158PMC
http://dx.doi.org/10.3390/molecules27123954DOI Listing

Publication Analysis

Top Keywords

poplar bark
16
bark leaves
16
active compounds
12
salicylates flavonoids
8
flavonoids poplar
8
leaves based
8
spectra poplar
8
poplar
6
quantification salicylates
4
bark
4

Similar Publications

Salicylic Aldehyde and Its Potential Use in Semiochemical-Based Pest Control Strategies Against .

Insects

December 2024

Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.

The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.

View Article and Find Full Text PDF

PcWRKY1 Represses Transcription of Yellow Stripe-Like 3 (PcYSL3) to Negatively Regulate Radial Cadmium Transport in Poplar Stems.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, P. R. China.

A considerable amount of cadmium (Cd) can accumulate in the bark of poplar stems, but the Cd transport pathway and its underlying molecular mechanisms remain unknown. Here, a Cd radial transport pathway in poplar stems and a previously unrecognized PcWRKY1-Yellow Stripe-Like 3 (PcYSL3) module that regulates Cd transport are identified in Populus × canescens (Aiton) Sm. Cadmiun-nicotianamine (Cd-NA) in xylem vessels in poplar stem-wood is unloaded to adjacent ray parenchyma cells and further radially transported to bark-phloem.

View Article and Find Full Text PDF

Understanding how mutations arise and spread through individuals and populations is fundamental to evolutionary biology. Most organisms have a life cycle with unicellular bottlenecks during reproduction. However, some organisms like plants, fungi, or colonial animals can grow indefinitely, changing the manner in which mutations spread throughout both the individual and the population.

View Article and Find Full Text PDF

Batocera horsfieldi is the primary stemboring pest of timber forests and economic forests in China, belonging to the Coleoptera Cerambycidae. In this study, gas chromatography-mass spectrometry was used to analyze the volatile components in the supplementary feeding hosts and oviposition hosts of B. horsfieldi, and characteristic fingerprints were constructed.

View Article and Find Full Text PDF
Article Synopsis
  • Adaptation to abiotic stress, like salinity, is crucial for the survival of perennial trees, as it impacts their growth and productivity.
  • The study focused on Populus tremula x alba, where researchers used laser capture microdissection to analyze the effects of salinity on specific leaf cells, revealing intricate molecular responses.
  • Results indicated that salinity triggers protein and metabolite changes in vascular cells, affecting nitrogen metabolism and driving the accumulation of essential storage proteins, highlighting the role of photorespiration in helping trees adapt to stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!