Vector-borne infectious diseases are responsible for the deaths of over 700,000 people annually, than 400,000 of them resulting from malaria. The mosquito is one of the dominant vector species of human malaria transmission. A significant issue of the conventional insecticides which target the arthropod borne infectious diseases is their induced resistance. To overcome this inconvenience, insecticides with new modes of action are required. One of the most promising targets for the development of new potential insecticides as evidenced by current studies is the D1-like dopamine receptor (DAR). To get a deeper understanding of the structural information of this receptor, the 3D homology model was built. The possible sites within the protein were identified and the most probable binding site was highlighted. The homology model along with a series of DAR antagonists with known activity against larvae were used in docking experiments to gain insight into their intermolecular interactions. Furthermore, virtual screening of the natural compounds from the SPECS database led to the prediction of toxicity and environmental hazards for one potential new insecticide against the mosquito.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227062PMC
http://dx.doi.org/10.3390/molecules27123846DOI Listing

Publication Analysis

Top Keywords

malaria mosquito
8
infectious diseases
8
homology model
8
homology modeling
4
modeling molecular
4
molecular docking
4
docking approaches
4
approaches proposal
4
proposal novel
4
insecticides
4

Similar Publications

Malaria, a mosquito-borne disease caused by five plasmodium species, still has a life-threatening risk worldwide. Clinical manifestations can range from mild nonspecific symptoms to severe disease. In non-endemic regions, sporadic cases frequently pose significant challenges to health workers as delayed diagnosis can lead to serious consequences and even death.

View Article and Find Full Text PDF

Background: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Here, we reported metabolic resistance mechanisms and demonstrated that multiple non-coding Ribonucleic Acids (ncRNAs) could play a potential role in An.

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

Identification of Dengue Virus Serotype and Genotype: A Comprehensive study from AIIMS Patna, Bihar.

Indian J Med Microbiol

January 2025

Regional Viral Research and Diagnostic Laboratory, Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India. Electronic address:

Purpose: Dengue virus, a major global health concern, exhibits significant genetic diversity, leading to distinct serotypes and genotypes. Dengue is the second most common disease spread by mosquitoes that infect humans, after malaria. In recent decades, there has also been a shift in the tendencies of virus transmission from urban to peri-urban and rural settings.

View Article and Find Full Text PDF

Mosquitoes are important vectors for the transmission of some major infectious diseases of humans, i.e., malaria, dengue, West Nile Virus and Zika virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!