Renifolin F is a prenylated chalcone isolated from , a traditional minority ethnic medicine used to treat the respiratory diseases and asthma. Based on the effects of the original medicine plant, we established an in vivo mouse model of allergic asthma using ovalbumin (OVA) as an inducer to evaluate the therapeutic effects of Renifolin F. In the research, mice were sensitized and challenged with OVA to establish an allergic asthma model to evaluate the effects of Renifolin F on allergic asthma. The airway hyper-reactivity (AHR) to methacholine, cytokine levels, ILC2s quantity and mircoRNA-155 expression were assessed. We discovered that Renifolin F attenuated AHR and airway inflammation in the OVA-induced asthmatic mouse model by inhibiting the regulation of ILC2s in the lung, thereby, reducing the upstream inflammatory cytokines IL-25, IL-33 and TSLP; the downstream inflammatory cytokines IL-4, IL-5, IL-9 and IL-13 of ILC2s; and the co-stimulatory factors IL-2 and IL-7; as well as the expression of microRNA-155 in the lung. The findings suggest a therapeutic potential of Renifolin F on OVA-induced airway inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227769 | PMC |
http://dx.doi.org/10.3390/molecules27123789 | DOI Listing |
Phytother Res
January 2025
Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
MedComm (2020)
January 2025
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is primarily known for causing severe joint and muscle symptoms, but its pathological effects have extended beyond these tissues. In this study, we conducted a comprehensive proteomic analysis across various organs in rodent and nonhuman primate models to investigate CHIKV's impact on organs beyond joints and muscles and to identify key host factors involved in its pathogenesis. Our findings reveal significant species-specific similarities and differences in immune responses and metabolic regulation, with proteins like Interferon-Stimulated Gene 15 (ISG15) and Retinoic Acid-Inducible Gene I (RIG-I) playing crucial roles in the anti-CHIKV defense.
View Article and Find Full Text PDFMetastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
Utricle is an important vestibular sensory organ for maintaining balance. 3,3'-iminodipropionitrile (IDPN), a prototype nitrile toxin, has been reported to be neurotoxic and vestibulotoxic, and can be used to establish an damage model of vestibular dysfunction. However, the mechanism of utricular HCs damage caused by IDPN is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!