Many difficult-to-treat human infections related to catheters and other indwelling devices are caused by bacteria residing in biofilms. One of the key properties of microorganisms residing in a biofilm is decreased susceptibility towards antimicrobial agents. Therefore, many different approaches have been researched to destroy or inhibit biofilm production by bacteria. Different iminosugars (IS) were reported to inhibit biofilm formation in , and . The aim of this study was to look for a spectrum of the activity in one of these IS. The iminosugar PDIA beta-1-C-propyl-1,4-dideoxy-1,4-imino-L-arabinitol was tested in vitro at the same concentration against 30 different strains of the most important Gram-negative and Gram-positive human pathogens looking for their biofilm production and viability at different time intervals. It appeared that PDIA inhibited biofilm production of spp., , spp. and in 8 h, and spp., spp. and in 24 h. PDIA caused no growth inhibition of the tested bacteria at a concentration of 0.9 mM. Our results indicate a broad-spectrum biofilm inhibitory activity of PDIA. which may be the basis for future application studies that will help in control of the associated device and biofilm-related infections caused by a wide spectrum of the causative agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228635 | PMC |
http://dx.doi.org/10.3390/microorganisms10061222 | DOI Listing |
Can J Infect Dis Med Microbiol
December 2024
Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
The rise in multidrug-resistant pathogens poses a formidable challenge in treating hospital-acquired infections, particularly those caused by . Biofilm formation is a critical factor contributing to antibiotic resistance, enhancing bacterial adherence and persistence. strains vary in virulence factors, influencing their pathogenicity and resistance profiles.
View Article and Find Full Text PDFInt J Pharm
December 2024
Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR, 5007 Villeurbanne, France.
The antimicrobial and antibiofilm properties of plant essential oils (EOs) have aroused significant interest for their potential as effective alternatives or supplements in combating microbial infections and biofilm-associated challenges. For these applications, EOs must be encapsulated to overcome some key technical limitations, including high volatility, poor stability, and low solubility. This study aimed to develop microencapsulated EOs derived from two valuable Moroccan medicinal plants, Lavandula stoechas L.
View Article and Find Full Text PDFEnviron Pollut
December 2024
São Paulo State University (UNESP), School of Engineering Bauru, Department of Civil and Environmental Engineering, Bauru, SP, Brazil. Electronic address:
Unsafe water has severe implications for human health. Among sanitary wastewater treatment technologies, those that treat effluent in the most natural way possible (avoiding chemicals) need to be employed to minimize environmental damage upon release. Microalgae-based systems are one of the more economical and sustainable methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
The excessive utilization of antibiotics gives rise to the development of bacterial resistance, the deterioration of animal immune functions, the increase in mortality rates, and the undermining of human immunity. Therefore, there is an urgent necessity to explore new antimicrobial agents or alternatives to tackle bacterial resistance. We investigated tea tree oil (TTO), a pure natural plant essential oil extracted from Melaleuca leaves, which exerted efficient antibacterial activities.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!