AI Article Synopsis

  • In urban wastewater treatment plants, bacteria play a key role in the biological cleaning process, but fungi, including molds and yeasts, also contribute significantly, with their diversity influenced by wastewater quality, climate, and treatment stages.
  • A study compared fungal diversity in two wastewater treatment plants in Lombardia, focusing on different depuration stages and using methods like morphological and molecular identification to analyze diversity types (α-, β-, and ζ-diversity).
  • The findings reveal specific dominant fungal orders (like Eurotiales and Saccharomycetales) and highlight variations in diversity between the two plants, noting a common decline in diversity during secondary sedimentation despite overall differences in their fungal communities.

Article Abstract

In urban wastewater treatment plants, bacteria lead the biological component of the depuration process, but the microbial community is also rich in fungi (mainly molds, yeasts and pseudo-yeasts), whose taxonomical diversity and relative frequency depend on several factors, e.g., quality of wastewater input, climate, seasonality, and depuration stage. By joining morphological and molecular identification, we investigated the fungal diversity in two different plants for the urban wastewater treatment in the suburbs of the two major cities in Lombardia, the core of industrial and commercial activities in Italy. This study presents a comparison of the fungal diversity across the depuration stages by applying the concepts of α-, β- and ζ-diversity. Eurotiales (mainly with and ), Trichosporonales (), Saccharomycetales (mainly with ) and Hypocreales (mainly with and ) are the most represented fungal orders and genera in all the stages and both the plants. The two plants show different trends in α-, β- and ζ-diversity, despite the fact that they all share a crash during the secondary sedimentation and turnover across the depuration stages. This study provides an insight on which taxa potentially contribute to each depuration stage and/or keep viable propagules in sludges after the collection from the external environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229248PMC
http://dx.doi.org/10.3390/microorganisms10061096DOI Listing

Publication Analysis

Top Keywords

fungal diversity
12
wastewater treatment
12
treatment plants
8
urban wastewater
8
depuration stage
8
depuration stages
8
α- β-
8
β- ζ-diversity
8
plants
5
depuration
5

Similar Publications

Earthworms are keystone animals stimulating litter decomposition and nutrient cycling. However, earthworms comprise diverse species which live in different soil layers and consume different types of food. Microorganisms in the gut of earthworms are likely to contribute significantly to their ability to digest organic matter, but this may vary among earthworm species.

View Article and Find Full Text PDF

Endophytes typically coexist with plants in symbiosis and transition into the saprobic system as plant tissues senesce, participating in the decomposition process of litter. However, the dynamic changes of endophytic communities during this process and their role in litter decomposition remain unclear. This study tracked the microbial composition across the transition from live leaves to litter in (L.

View Article and Find Full Text PDF

Phosphorus (P)-deficient soils serve as crucial habitats for endangered plant species. Microbiomes play pivotal roles in soil element cycling and in determining a plant's adaptability to the environment. However, the relationship between the endangered plant, microbiome, and soil stoichiometric traits, and how it affects plant adaption to P-deficient habitats remain largely unexplored.

View Article and Find Full Text PDF

Agricultural Practices and Environmental Factors Drive Microbial Communities in the Mezcal-Producing Agave angustifolia Haw.

Microb Ecol

January 2025

Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.

Mezcal, a traditional Mexican alcoholic beverage, has been a vital source of livelihood for indigenous and rural communities for centuries. However, increasing international demand is exerting pressure on natural resources and encouraging intensive agricultural practices. This study investigates the impact of management practices (wild, traditional, and conventional) and environmental factors on the microbial communities associated with Agave angustifolia, a key species in mezcal production.

View Article and Find Full Text PDF

Precipitation changes reshape desert soil microbial community assembly and potential functions.

Environ Res

January 2025

Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!