DNA Markers for Detection and Genotyping of .

Microorganisms

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal.

Published: May 2022

is a bacterial species encompassing both pathogenic and non-pathogenic strains and is frequently found colonizing the same host plants as . This presents the need to develop a detection and genotyping assay able to track these bacteria in microbial consortia with other xanthomonads. Eight -specific DNA markers (XEA1-XEA8) were selected by comparative genomics and validated in silico regarding their specificity and consistency using BLASTn, synteny analysis, CG content, codon usage (CAI/eCAI values) and genomic proximity to plasticity determinants. In silico, the selected eight DNA markers were found to be specific and conserved across the genomes of 11 strains, and in particular, five DNA markers (XEA4, XEA5, XEA6, XEA7 and XEA8) were unfailingly found in these genomes. A multiplex of PCR targeting markers XEA1 (819 bp), XEA8 (648 bp) and XEA5 (295 bp) was shown to successfully detect down to 1 ng of DNA (per PCR reaction). The topology of trees generated with the concatenated sequences of three markers (XEA5, XEA6 and XEA8) and four housekeeping genes (, , and ) underlined the equal discriminatory power of these features and thus the suitability of the DNA markers to discriminate lineages. Overall, this study displays a DNA-marker-based method for the detection and genotyping of strains, contributing to monitoring for its presence in -colonizing habitats. The present study proposes a workflow for the selection of species-specific detection markers. Prospectively, this assay could contribute to unveil alternative host species of ; and improve the control of phytopathogenic strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227330PMC
http://dx.doi.org/10.3390/microorganisms10061078DOI Listing

Publication Analysis

Top Keywords

dna markers
20
detection genotyping
12
xea5 xea6
8
markers
7
dna
6
detection
4
markers detection
4
genotyping bacterial
4
bacterial species
4
species encompassing
4

Similar Publications

In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.

View Article and Find Full Text PDF

In Vivo Clonal Analysis Using MADM with Spatiotemporal Specificity.

Methods Mol Biol

January 2025

IDG/McGovern Institute of Brain Research, Tsinghua University, Beijing, People's Republic of China.

Mosaic analysis with double markers (MADM) is a powerful in vivo lineage tracing technique. It utilizes Cre recombinase-dependent interchromosomal recombination to restore the stable expression of two fluorescent proteins sparsely in individual dividing stem or progenitor cells and their progenies. Here, we describe the application of this technique for quantitative lineage analysis of radial glial progenitors in the developing mouse neocortex at the single-cell resolution.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Mosaic Analysis with Double Markers (MADM) represents a mouse genetic approach coupling differential fluorescent labeling to genetic manipulations in dividing cells and their lineages. MADM uniquely enables the generation and visualization of individual control or homozygous mutant cells in a heterozygous genetic environment. Among its diverse applications, MADM has been used to dissect cell-autonomous gene functions important for cortical development and neural development in general.

View Article and Find Full Text PDF

DPYD genotype should be extended to rare variants: report on two cases of phenotype / genotype discrepancy.

Cancer Chemother Pharmacol

January 2025

Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.

The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!