The machining of micro/nano periodic surface structures using a femtosecond laser has been an academic frontier and hotspot in recent years. With an ultrahigh laser fluence and an ultrashort pulse duration, femtosecond laser machining shows unique advantages in material processing. It can process almost any material and can greatly improve the processing accuracy with a minimum machining size and heat-affected zone. Meanwhile, it can fabricate a variety of micro/nano periodic surface structures and then change a material's surface performance dramatically, such as the material's wetting performance, corrosive properties, friction properties, and optical properties, demonstrating great application potential in defense, medical, high-end manufacturing, and many other fields. In recent years, the research is gradually deepening from the basic theory to optimization design, intelligent control, and application technology. Nowadays, while focusing on metal structure materials, especially on stainless steel, research institutions in the field of micro and nano manufacturing have conducted systematic and in-depth experimental research using different experimental environments and laser-processing parameters. They have prepared various surface structures with different morphologies and periods with sound performance, and are one step closer to many civilian engineering applications. This paper reviews the study of micro/nano periodic surface structures and the performance of stainless steel machined using a femtosecond laser, obtains the general evolution law of surface structure and performance with the femtosecond laser parameters, points out several key technical challenges for future study, and provides a useful reference for the engineering research and application of femtosecond laser micro/nano processing technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230448PMC
http://dx.doi.org/10.3390/mi13060976DOI Listing

Publication Analysis

Top Keywords

surface structures
20
femtosecond laser
20
micro/nano periodic
16
periodic surface
16
stainless steel
12
structures performance
8
performance stainless
8
steel machined
8
machined femtosecond
8
surface
7

Similar Publications

Golden era of radiosensitizers.

Front Vet Sci

December 2024

Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia.

The past 30 years have brought undeniable progress in medicine, biology, physics, and research. Knowledge of the nature of the human body, diseases, and disorders has been constantly improving, and the same is true regarding their treatment and diagnosis. One of the greatest advances in recent years has been the introduction of nanoparticles (NPs) into medicine.

View Article and Find Full Text PDF

This study explores the influence of Fe ion incorporation on the oxygen-evolution reaction (OER) in alkaline media, utilizing CuO-based materials. Instead of developing an efficient and stable OER catalyst, this research investigates two distinct CuO variants: one with Fe ions adhered to the surface and another with Fe ions integrated into the CuO lattice. By employing a variety of analytical techniques, the study demonstrates that the CuO variant with surface-bound Fe ions (referred to as compound 1) exhibits significantly enhanced OER performance compared to the variant with internally embedded Fe ions (referred to as compound 2).

View Article and Find Full Text PDF

Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.

View Article and Find Full Text PDF

Hydrovoltaic power generation from liquid water and ambient moisture has attracted considerable research efforts. However, there is still limited consensus on the optimal material properties required to maximize the power output. Here, we used laminates of two different phases of layered MoS - metallic 1T' and semiconducting 2H - as representative systems to investigate the critical influence of specific characteristics, such as hydrophilicity, interlayer channels, and structure, on the hydrovoltaic performance.

View Article and Find Full Text PDF

Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments.

Small

December 2024

State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.

Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!