Nanoscale coating manufacturing (NCM) process modeling is an important way to monitor and modulate coating quality. The multivariable prediction of coated film and the data augmentation of the NCM process are two common issues in smart factories. However, there has not been an artificial intelligence model to solve these two problems simultaneously. Focusing on the two problems, a novel auxiliary regression using a self-attention-augmented generative adversarial network (AR-SAGAN) is proposed in this paper. This model deals with the problem of NCM process modeling with three steps. First, the AR-SAGAN structure was established and composed of a generator, feature extractor, discriminator, and regressor. Second, the nanoscale coating quality was estimated by putting online control parameters into the feature extractor and regressor. Third, the control parameters in the recipes were generated using preset parameters and target quality. Finally, the proposed method was verified by the experiments of a solar cell antireflection coating dataset, the results of which showed that our method performs excellently for both multivariable quality prediction and data augmentation. The mean squared error of the predicted thickness was about 1.6~2.1 nm, which is lower than other traditional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230861 | PMC |
http://dx.doi.org/10.3390/mi13060847 | DOI Listing |
ACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
Despite the ubiquitous use of glasses, their simultaneous susceptibility toward scratch-induced defects and atmospheric hydration deteriorates their mechanical and chemical durability. Here, it is demonstrated that the deposition of a few-layer graphene provides unprecedented wear resistance to silica glass in aqueous conditions. To this extent, nanoscale scratch tests are carried out on graphene-glass surfaces via contact-mode atomic force microscopy with chemically inert and reactive tips.
View Article and Find Full Text PDFNanoscale
December 2024
State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
Polyvinylidene fluoride (PVDF) film, with high energy density and excellent mechanical properties, has drawn attention as an energy storage device. However, conduction loss in PVDF under high electric fields hinders improvement in efficiency due to electrode-limited and bulk-limited conduction. Well-aligned multilayer interfaces of two-dimensional (2D) nanocoatings can block charge injection, reducing electrode-limited conduction loss in dielectric polymers.
View Article and Find Full Text PDFAdv Biomed Res
November 2024
Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications.
View Article and Find Full Text PDFSci Rep
December 2024
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Developing and creating novel antibiotics is one of the most important targets in treating infectious diseases. Novel coumarins were synthesized and characterized using different spectroscopic techniques such as Fourier Transform Infrared (FTIR), Nuclear magnetic resonanceH and C and mass spectroscopy (MS). All of the synthesized compounds have been tested for activity and sensitivity against the microbial strains of B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!