Smart textiles have become a promising area of research for heating applications. Coatings with nanomaterials allow the introduction of different functionalities, enabling doped textiles to be used in sensing and heating applications. These coatings were made on a piece of woven cotton fabric through screen printing, with a different number of layers. To prepare the paste, nanomaterials such as graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs) were added to a polyurethane-based polymeric resin, in various concentrations. The electrical conductivity of the obtained samples was measured and the heat-dissipating capabilities assessed. The results showed that coatings have induced electrical conductivity and heating capabilities. The highest electrical conductivity of (9.39 ± 1.28 × 10 S/m) and (9.02 ± 6.62 × 10 S/m) was observed for 12% (/) GNPs and 5% (/) (CNTs + GNPs), respectively. The sample with 5% (/) (CNTs + GNPs) and 12% (/) GNPs exhibited a Joule effect when a voltage of 12 V was applied for 5 min, and a maximum temperature of 42.7 °C and 40.4 °C were achieved, respectively. It can be concluded that higher concentrations of GNPs can be replaced by adding CNTs, still achieving nearly the same performance. These coated textiles can potentially find applications in the area of heating, sensing, and biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230175PMC
http://dx.doi.org/10.3390/ma15124323DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
12
area heating
8
heating applications
8
applications coatings
8
12% gnps
8
cnts gnps
8
gnps
6
joule-heating thin
4
thin films
4
films carbon-based
4

Similar Publications

Spontaneous Formation of Single-Crystalline Spherulites in a Chiral 2D Hybrid Perovskite.

J Am Chem Soc

January 2025

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.

In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.

View Article and Find Full Text PDF

Can a Cochlear Implant Be Used as an Electrical Impedance Tomography Device?

Int J Numer Method Biomed Eng

January 2025

Bioengineering, Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Gauteng, South Africa.

The imaging of the live cochlea is a challenging task. Regardless of the quality of images obtained from modern clinical imaging techniques, the internal structures of the cochlea mainly remain obscured. Electrical impedance tomography (EIT) is a safe, low-cost alternative medical imaging technique with applications in various clinical scenarios.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Introduction: The salinization of coastal soils is a primary cause of global land degradation. The aim of this study was to evaluate the effect of organic amendment on the soil microbial community within a saline gradient.

Methods: The study was designed with five levels of electrical conductivity (EC): 0.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!