Effect of the Surface Morphology of Porous Coatings on Secondary Electron Yield of Metal Surface.

Materials (Basel)

Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

Published: June 2022

Surface roughening is an important material surface treatment technique, and it is particularly useful for use in secondary electron yield (SEY) suppression on metal surfaces. Porous structures produced via roughening on coatings have been confirmed to reduce SEY, but the regulation strategy and the influence of process parameters both remain unclear in the practical fabrication of effective porous structures. In this paper, the effect of the surface morphology of porous coatings on the SEY of aluminum alloy substrates was studied. Surface characterization and SEY measurements were carried out for samples with a specific process technique on their surfaces. An exponential fitting model of the correlation between surface roughness and the peak values of SEY curves, δm, was summarized. Furthermore, an implementation strategy to enable low surface SEY was achieved from the analysis of the effect of process parameters on surface morphology formation. This work will aid our understanding of the effect of the irregular surface morphology of porous coatings on SEY, thereby revealing low-cost access to the realization of an easy-to-scale process that enables low SEY.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231154PMC
http://dx.doi.org/10.3390/ma15124322DOI Listing

Publication Analysis

Top Keywords

surface morphology
16
morphology porous
12
porous coatings
12
surface
10
secondary electron
8
electron yield
8
sey
8
porous structures
8
process parameters
8
coatings sey
8

Similar Publications

Background/purpose: Osseointegration potential is greatly depended on the interaction between bone cells and dental implant surface. Since zirconia ceramic has a bioinert surface, functionalization of the surface with an organic compound allylamine was conducted to overcome its drawback of minimal interaction with the surrounding bone.

Materials And Methods: The zirconia surface was initially treated with argon glow discharge plasma (GDP), then combined with amine plasma at three different conditions of 50-W, 75-W and 85-W, to prepare the final samples.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, and the most common form is coronary artery disease (CAD). Treatment options include coronary artery bypass surgery (CABG) or percutaneous heart intervention (PCI), but both have drawbacks. Bare metal stents (BMS) are commonly used to treat CAD; however, they lead to restenosis.

View Article and Find Full Text PDF

Tumor spheroids are one of the well-characterized 3D culture systems bearing close resemblance to the physiological tissue organization and complexity of avascular solid tumor stage with hypoxic core. They hold a wide-spread application in the field of pharmaceutical science and anti-cancer drug research. However, the difficulty in determining optimal technique for the generation of spheroids with uniform size and shape, evaluation of experimental outputs, or mass production often limits their usage in anti-cancer research and in high-throughput drug screening.

View Article and Find Full Text PDF

Supercritical CO modified by polar solvents can extract a wide variety of polar and non-polar chemical components compared to conventional methods. The current study aims to extract Rivas (Rheum ribes) flower using the ethanol modified supercritical CO (SCO-EOH) method; analyze its chemical compounds and bioactivity, encapsulate the extract in maltodextrin, gum-Arabic (GA), and their combination (GA + MD) using the spray drying method and investigate the differences among microparticles using Principal Component Analysis (PCA). The Rivas extract obtained by the SCO-EOH method was a rich source of unsaturated fatty acids (mainly linoleic acid: 57.

View Article and Find Full Text PDF

Erythrocyte interaction with titanium nanostructured surfaces.

In Vitro Model

November 2022

Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA.

Titanium and its alloys are used to make different medical devices such as stents, artificial heart valves, and catheters for cardiovascular diseases due to their superior biocompatibility. Thrombus formation begins on the surface of these devices as soon as they encounter blood. This leads to the formation of blood clots, which obstructs the flow of blood that leads to severe complications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!