The article presents the results of the analysis of the influence of incremental sheet forming process parameters on surface roughness measured on both sides of conical drawpieces made from pure titanium Grade 2 sheets. The experimental plan was created on the basis of a central composite design. The study assumed the variability of feed rate, spindle speed, and incremental step size in the following range: 500-2000 mm/min, 0-600 rpm, and 0.1-0.5 mm, respectively. Two strategies differing in the direction of the tool rotation in relation to the feed direction were also analysed. Analysis of variance is performed to understand the adequacy of the proposed model and the influence of the input parameters on the specific roughness parameter. The sensitivity of the process parameter on the selected surface roughness parameters was assessed using artificial neural networks. It was found that the change in the surface roughness of the inner surface of the drawpiece is not related to the change of surface roughness of the outer side. The morphology of the outer surface of the draw pieces was uniform with a much greater profile height than the inner surface that had interacted with the tool. Taking into account the outer surface of the drawpiece, the direction of tool rotation is also most closely correlated with the parameters Sa, Sz, and Sku. Step size and feed rate provide the highest information capacity in relation to skewness and kurtosis of the inner surface of the drawpiece.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228883 | PMC |
http://dx.doi.org/10.3390/ma15124278 | DOI Listing |
PLoS One
January 2025
School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China.
The shear resistance of filling joints is an important factor affecting the stability of rock joints. Pressure-shear tests of cement-filled joints were carried out. Combined with the acoustic emission (AE) technique, the effects of normal stress, roughness and filling degree on the shear strength, damage morphology and damage evolution of cement-filled joints were investigated.
View Article and Find Full Text PDFPLoS One
January 2025
School of Civil Engineering, Guizhou University, Guiyang, Guizhou, China.
The mechanical properties of jointed rock bodies are important in guiding engineering design and construction. Using the particle flow software PFC2D, we conducted direct shear test simulations on joints with various inclinations and five different roughness levels to examine the models' crack extension penetration paths, damage modes, and strength characteristics. The findings indicate that the direction of the joint influences the pattern of the rock crack and its penetration route.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.
Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.
View Article and Find Full Text PDFJ Prosthodont
January 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.
Material And Methods: The plate-shaped UT-Zr samples were fabricated.
Nanomaterials (Basel)
January 2025
Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!