Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Several types of research currently use machine learning (ML) methods to estimate the mechanical characteristics of concrete. This study aimed to compare the capacities of four ML methods: eXtreme gradient boosting (XG Boost), gradient boosting (GB), Cat boosting (CB), and extra trees regressor (ETR), to predict the splitting tensile strength of 28-day-old self-compacting concrete (SCC) made from recycled aggregates (RA), using data obtained from the literature. A database of 381 samples from literature published in scientific journals was used to develop the models. The samples were randomly divided into three sets: training, validation, and test, with each having 267 (70%), 57 (15%), and 57 (15%) samples, respectively. The coefficient of determination (R), root mean square error (RMSE), and mean absolute error (MAE) metrics were used to evaluate the models. For the training data set, the results showed that all four models could predict the splitting tensile strength of SCC made with RA because the R values for each model had significance higher than 0.75. XG Boost was the model with the best performance, showing the highest R value of R = 0.8423, as well as the lowest values of RMSE (=0.0581) and MAE (=0.0443), when compared with the GB, CB, and ETR models. Therefore, XG Boost was considered the best model for predicting the splitting tensile strength of 28-day-old SCC made with RA. Sensitivity analysis revealed that the variable contributing the most to the split tensile strength of this material after 28 days was cement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229901 | PMC |
http://dx.doi.org/10.3390/ma15124164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!