Helium bubbles are known to form in nuclear reactor structural components when displacement damage occurs in conjunction with helium exposure and/or transmutation. If left unchecked, bubble production can cause swelling, blistering, and embrittlement, all of which substantially degrade materials and-moreover-diminish mechanical properties. On the mission to produce more robust materials, nanocrystalline (NC) metals show great potential and are postulated to exhibit superior radiation resistance due to their high defect and particle sink densities; however, much is still unknown about the mechanisms of defect evolution in these systems under extreme conditions. Here, the performances of NC nickel (Ni) and iron (Fe) are investigated under helium bombardment via transmission electron microscopy (TEM). Bubble density statistics are measured as a function of grain size in specimens implanted under similar conditions. While the overall trends revealed an increase in bubble density up to saturation in both samples, bubble density in Fe was over 300% greater than in Ni. To interrogate the kinetics of helium diffusion and trapping, a rate theory model is developed that substantiates that helium is more readily captured within grains in helium-vacancy complexes in NC Fe, whereas helium is more prone to traversing the grain matrices and migrating to GBs in NC Ni. Our results suggest that (1) grain boundaries can affect bubble swelling in grain matrices significantly and can have a dominant effect over crystal structure, and (2) an NC-Ni-based material can yield superior resistance to irradiation-induced bubble growth compared to an NC-Fe-based material and exhibits high potential for use in extreme environments where swelling due to He bubble formation is of significant concern.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231260PMC
http://dx.doi.org/10.3390/ma15124092DOI Listing

Publication Analysis

Top Keywords

bubble density
12
nanocrystalline metals
8
grain matrices
8
bubble
7
helium
6
implications microstructure
4
microstructure helium-implanted
4
helium-implanted nanocrystalline
4
metals helium
4
helium bubbles
4

Similar Publications

Synergizing superwetting and architected electrodes for high-rate water splitting.

Nanoscale

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Water splitting is one of the most promising technologies for generating green hydrogen. To meet industrial demand, it is essential to boost the operation current density to industrial levels, typically in the hundreds of mA cm. However, operating at these high current densities presents significant challenges, with bubble formation being one of the most critical issues.

View Article and Find Full Text PDF

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.

View Article and Find Full Text PDF

To evaluate the clinical outcomes of cornea transplantation (penetrating keratoplasty, Descemet membrane endothelial keratoplasty, Descemet stripping automated endothelial keratoplasty, and deep anterior lamellar keratoplasty) using donor corneas stored in Eusol-C hypothermic storage medium compared to corneas stored in organ-culture. : The clinical outcomes of 92 patients who underwent corneal transplantation with human donor corneas stored in Eusol-C medium at 2-8 °C were retrospectively evaluated. The control group consisted of 169 patients who received corneas organ-cultured at 31 °C.

View Article and Find Full Text PDF

Polymer electrolyte membrane water electrolyzers (PEMWEs) are a critical technology for efficient hydrogen production to decarbonize fuels and industrial feedstocks. To make hydrogen cost-effective, the overpotentials across the cell need to be decreased and platinum-group metal loading reduced. One overpotential that needs to be better understood is due to mass transport limitations from bubble formation within the porous transport layer (PTL) and anode catalyst layer (ACL), which can lead to a reduction in performance at typical operating current densities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!