The development of environmentally benign silicone composites from sugar palm fibre and silicone rubber was carried out in this study. The mechanical, physical, and morphological properties of the composites with sugar palm (SP) filler contents ranging from 0% to 16% by weight (wt%) were investigated. Based on the uniaxial tensile tests, it was found that the increment in filler content led to higher stiffness. Via dynamic mechanical analysis (DMA), the viscoelastic properties of the silicone biocomposite showed that the storage modulus and loss modulus increased with the increment in filler content. The physical properties also revealed that the density and moisture absorption rate increased as the filler content increased. Inversely, the swelling effect of the highest filler content (16 wt%) revealed that its swelling ratio possessed the lowest rate as compared to the lower filler addition and pure silicone rubber. The morphological analysis via scanning electron microscopy (SEM) showed that the sugar palm filler was evenly dispersed and no agglomeration could be seen. Thus, it can be concluded that the addition of sugar palm filler enhanced the stiffness property of silicone rubber. These new findings could contribute positively to the employment of natural fibres as reinforcements for greener biocomposite materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228608PMC
http://dx.doi.org/10.3390/ma15124062DOI Listing

Publication Analysis

Top Keywords

silicone rubber
16
sugar palm
16
filler content
16
palm filler
12
composites sugar
8
filler
8
increment filler
8
silicone
6
morphological physical
4
physical mechanical
4

Similar Publications

Evaluating Cost-effectiveness and Mixing Efficacy for Elastomeric and Temporary Restorative Material Using Two Mixing Tips: A SEM-EDS Analysis.

J Contemp Dent Pract

September 2024

Department of Prosthodontics and Crown & Bridge, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India, ORCID: https://orcid.org/0009-0008-7338-1699.

Aim: This study aimed to compare the mixing efficacy and cost-effectiveness of new T-mixer tips against the standard double helical tips for a light-body elastomeric impression and a temporary/interim restorative material using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy.

Methodology: Automixed samples ( = 16) were divided into four groups of four samples each: Samples that were mixed with Helical tip for elastomer, T-mixer tip for elastomer, Helical tip for interim restorative material, and T-mixer tip for interim restorative material. These samples were then evaluated for SEM analysis.

View Article and Find Full Text PDF

Background: Operative delivery is a technique used during vaginal or cesarean birth to facilitate the patient's labor course through the assistance of a vacuum extractor. This method is increasingly used compared with forceps. This study aimed to investigate the forced effects of vacuum extractors comprising vacuum cups with different thicknesses on the fetal head and the vacuum extractor during vacuum-assisted delivery and to determine the optimal thickness for reducing the failure rate and minimizing neonatal and maternal morbidity.

View Article and Find Full Text PDF

Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed.

View Article and Find Full Text PDF

Significance: Pulse oximeter measurements are commonly relied upon for managing patient care and thus often require human testing before they can be legally marketed. Recent clinical studies have also identified disparities in their measurement of blood oxygen saturation by race or skin pigmentation.

Aim: The development of a reliable bench-top performance test method based on tissue-simulating phantoms has the potential to facilitate pre-market assessment and the development of more accurate and equitable devices.

View Article and Find Full Text PDF

The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!