AI Article Synopsis

Article Abstract

Fracture during the assembly process is an important failure mode for high-lock bolts used in the aviation industry, which greatly increases the potential of unpredictable accidents during service. In the current study, the underlying reasons for fracture during the assembly of a TC4 high-lock bolt was investigated using a tensile test and finite element analysis (FEA). The microstructure of the as-received bolt consisted of a high proportion of α phase, some β phase, and a small amount of α' phase formed via martensite phase transformation during the rammer process. The experimental force-displacement curves revealed an average yield load of 55.9 kN and a breaking load of 67.65 kN. The corresponding yield strength was calculated to be 0.9 GPa, which was smaller than the standard value of TC4. This was attributed to the preload-induced stress concentration on the thread surface, leading to obvious strain hardening, which can lead to crack initiation. The effect of preload was further confirmed by the fractographies in which the initial crack was observed on the thread surface. The fractographies suggested that hybrid fracture occurred on the tensile loaded bolt. The initial failure was brittle fracture on the thread surface, transforming into ductile fracture in the screw. The results can contribute to understanding the effect of preload on the load carry capacity of high-lock bolts and provide a strategy to design its assembly specification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229667PMC
http://dx.doi.org/10.3390/ma15124049DOI Listing

Publication Analysis

Top Keywords

thread surface
12
assembly tc4
8
tc4 high-lock
8
high-lock bolt
8
finite element
8
element analysis
8
fracture assembly
8
high-lock bolts
8
fracture
6
fracture mode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!