Background and Objectives: The consumption of dietary supplements has increased over the last decades among pregnant women, becoming an efficient resource of micronutrients able to satisfy their nutritional needs during pregnancy. Furthermore, gestational drug administration might be necessary to treat several pregnancy complications such as hypertension. Folic acid (FA) and folate (FT) supplementation is highly recommended by clinicians during pregnancy, especially for preventing neural tube birth defects, while labetalol (LB) is a β-blocker commonly administered as a safe option for the treatment of pregnancy-related hypertension. Currently, the possible toxicity resulting from the co-administration of FA/FT and LB has not been fully evaluated. In light of these considerations, the current study was aimed at investigating the possible in vitro cardio- and hepato-toxicity of LB-FA and LB-FT associations. Materials and Methods: Five different concentrations of LB, FA, FT, and their combination were used in myoblasts and hepatocytes in order to assess cell viability, cell morphology, and wound regeneration. Results: The results indicate no significant alterations in terms of cell viability and morphology in myoblasts (H9c2(2-1)) and hepatocytes (HepaRG) following a 72-h treatment, apart from a decrease in the percentage of viable H9c2(2-1) cells (~67%) treated with LB 150 nM−FT 50 nM. Additionally, LB (50 and 150 nM)−FA (0.2 nM) exerted an efficient wound regenerating potential in H9c2(2-1) myoblasts (wound healing rates were >80%, compared to the control at 66%), while LB-FT (at all tested concentrations) induced no significant impairment to their migration. Conclusions: Overall, our findings indicate that LB-FA and LB-FT combinations lack cytotoxicity in vitro. Moreover, beneficial effects were noticed on H9c2(2-1) cell viability and migration from LB-FA/FT administration, which should be further explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229417PMC
http://dx.doi.org/10.3390/medicina58060784DOI Listing

Publication Analysis

Top Keywords

cell viability
12
lb-fa lb-ft
8
h9c22-1
5
vitro toxicological
4
toxicological profile
4
profile labetalol-folic
4
labetalol-folic acid/folate
4
acid/folate co-administration
4
co-administration h9c22-1
4
h9c22-1 heparg
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!