: Metformin is currently the leading drug of choice for treating type 2 diabetes mellitus, being one of the most widely used drugs worldwide. The beneficial effects of Metformin, however, extend far beyond the reduction of blood glucose. Therefore, this study aimed to evaluate Metformin's effects both in vitro and in ovo. Metformin has been tested in five different concentrations in human hepatocytes -HepaRG, in terms of cell viability, morphology, structure and number of nuclei and mitochondria, as well as the effect on cell migration. Through the application of HET-CAM, the biocompatibility and potential anti-irritant, as well as protective effects on the vascular plexus were also assessed. According to the results obtained, Metformin increases cell viability without causing morphological changes to cells, mitochondria, or nuclei. Metformin displayed an anti-irritant activity rather than causing irritation at the level of the vascular plexus. In conclusion, Metformin enhances cell viability and proliferation and, has a protective effect on the vascular plexus. Nonetheless, more studies are required to clarify the mechanism of hepatoprotective effect of metformin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228172PMC
http://dx.doi.org/10.3390/medicina58060705DOI Listing

Publication Analysis

Top Keywords

cell viability
12
vascular plexus
12
vitro ovo
8
metformin
8
hepatoprotective metformin
8
ovo evaluation
4
evaluation potential
4
potential hepatoprotective
4
metformin metformin
4
metformin currently
4

Similar Publications

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA gamma herpesvirus. Like other herpesviruses, KSHV establishes a latent infection with limited gene expression, while KSHV occasionally undergoes the lytic replication phase, which produces KSHV progenies and infects neighboring cells. KSHV genome encodes 80+ open reading frames.

View Article and Find Full Text PDF

Mandarin fish ranavirus (MRV) is a distinctive member among the genus of the family . The persistently covert infection of MRV was previously observed in a natural outbreak of MRV, but the underlying mechanism remains unclear. Here, we show that mandarin fish peripheral B lymphocytes are implemented as viral reservoirs to maintain the persistent infection.

View Article and Find Full Text PDF

Background/objectives: DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast as a delivery system for DNA vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!