Molecular and Biochemical Mechanisms of Elicitors in Pest Resistance.

Life (Basel)

Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand.

Published: June 2022

AI Article Synopsis

Article Abstract

Insect herbivores have a variety of life cycles and feeding habits, making them extremely diverse. With their host plants, they form close relationships and suppress their defense mechanisms. Molecular elicitors are the key bio-elements in the detection and recognition of attacking enemies in tissue consumption. Insect oral secretion, frass, and fluid of egg deposition contain biologically active molecules called herbivore-associated elicitors (HAEs) that are recognized by pattern-recognition receptors (PRRs). Many plants distinguish insect feeding from wounding by HAEs present in their oral secretions (OS) and induce local and/or systemic responses against arthropod feeding. PRRs perceive HAEs in the oral secretion of caterpillars in a species-specific manner to elicit exclusive defense responses. HAEs-PRRs interactions induce plant resistance by reprogramming plant metabolism and transcriptional machinery. Quantitative, timely, and coordinated plant response initiate early signaling events, including Ca, reactive oxygen species (ROS), and mitogen-activated protein kinases (MAPKs). However, in insect herbivory, little is known about the molecular basis of signal transduction and regulation of plant resistance. We discuss here how early signaling cascades converge into the accumulation of phytohormones that regulate downstream special metabolites against herbivores. In this review, we propose a hypothetical model of PPRs-HAEs-mediated-induced responses in plants and discuss how PRRs-HAEs interactions elicit short- and long-term induced defenses in plants. The understanding of PRRs-HAEs interactions will help to explore the fundamental molecular mechanisms of host manipulation and may generate prospects to develop novel pest-resistance strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225073PMC
http://dx.doi.org/10.3390/life12060844DOI Listing

Publication Analysis

Top Keywords

oral secretion
8
haes oral
8
plant resistance
8
early signaling
8
prrs-haes interactions
8
molecular
4
molecular biochemical
4
biochemical mechanisms
4
mechanisms elicitors
4
elicitors pest
4

Similar Publications

Protocol for oral fecal gavage to reshape the gut microbiota in mice.

STAR Protoc

January 2025

Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Grandulate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. Electronic address:

Fecal microbiota transplantation (FMT) is clinically applied, while oral FMT (oral fecal gavage [OFG]) is preferred for experimental mice. Here, we present a protocol for OFG in antibiotic-pretreated mice, demonstrating the progressive, time-dependent evolution of the gut microbiota in the recipients. We describe steps for fecal sample collection and preparation procedures, oral gavage, and monitoring gut microbiota changes.

View Article and Find Full Text PDF

Importance: The D842V platelet-derived growth factor receptor α (PDGFRA) mutation identifies a molecular subgroup of gastrointestinal stromal tumors (GISTs), primarily resistant to standard tyrosine kinase inhibitors and with an overall more indolent behavior. Although functional imaging with 18F-fluorodeoxyglucose-labeled positron emission tomography ([18F]FDG-PET) plays a proven role in GISTs, especially in early assessment of tumor response, less is known about [18F]FDG uptake according to the GIST molecular subtypes.

Objective: To evaluate the degree of [18F]FDG uptake in PDGFRA-mutant GISTs and better define the role of functional imaging in this rare and peculiar subset of GISTs.

View Article and Find Full Text PDF

A20 as a Potential Therapeutic Target for COVID-19.

Immun Inflamm Dis

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Background: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors.

View Article and Find Full Text PDF

Rhanterium Epapposum Essential Oil and Its Primary Compounds Control Infection, Inflammation, and Serum Electrolyte Imbalance in Mice with Giardiasis.

Acta Parasitol

January 2025

Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Ad Dawadimi, Shaqra, 17464, Saudi Arabia.

Purpose: The present experimental study seeks to evaluate the in vitro and in vivo effects, as well as the potential mechanisms of action, of Rhanterium epapposum essential oil (REE) and its main constituents against Giardia lamblia infection.

Methods: The analysis of REE was performed using the Gas Chromatography-Mass Spectrometry (GC-MS) detector. The in vitro effects of REE and its main constituents on viability of G.

View Article and Find Full Text PDF

Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Aloe vera (L.) Burm.f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!