In previous studies, we examined the effects of space microgravity on human neural stem cells. To date, there are no studies on a different type of cell that is critical for myelination and electrical signals transmission, oligodendrocyte progenitors (OLPs). The purpose of the present study was to examine the behavior of space-flown OLPs (SPC-OLPs) as they were adapting to Earth's gravity. We found that SPC-OLPs survived, and most of them proliferated normally. Nonetheless, some of them displayed incomplete cytokinesis. Both morphological and ontogenetic analyses showed that they remained healthy and expressed the immature OLP markers Sox2, PDGFR-α, and transferrin (Tf) after space flight, which confirmed that SPC-OLPs displayed a more immature phenotype than their ground control (GC) counterparts. In contrast, GC OLPs expressed markers that usually appear later (GPDH, O4, and ferritin), indicating a delay in SPC-OLPs' development. These cells remained immature even after treatment with culture media designed to support oligodendrocyte (OL) maturation. The most remarkable and surprising finding was that the iron carrier glycoprotein Tf, previously described as an early marker for OLPs, was expressed ectopically in the nucleus of all SPC-OLPs. In contrast, their GC counterparts expressed it exclusively in the cytoplasm, as previously described. In addition, analysis of the secretome demonstrated that SPC-OLPs contained 3.5 times more Tf than that of GC cells, indicating that Tf is gravitationally regulated, opening two main fields of study to understand the upregulation of the Tf gene and secretion of the protein that keep OLPs at a progenitor stage rather than moving forward to more mature phenotypes. Alternatively, because Tf is an autocrine and paracrine factor in the central nervous system (CNS), in the absence of neurons, it accumulated in the secretome collected after space flight. We conclude that microgravity is becoming a novel platform to study why in some myelin disorders OLPs are present but do not mature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224676PMC
http://dx.doi.org/10.3390/life12060797DOI Listing

Publication Analysis

Top Keywords

space flight
12
oligodendrocyte progenitors
8
olps expressed
8
olps
6
spc-olps
5
delayed maturation
4
maturation oligodendrocyte
4
progenitors microgravity
4
microgravity implications
4
implications multiple
4

Similar Publications

Mechanisms and Countermeasures for Muscle Atrophy in Microgravity.

Cells

December 2024

Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Previous studies have revealed that muscle atrophy emerges as a significant challenge faced by astronauts during prolonged missions in space. A loss in muscle mass results in a weakening of skeletal muscle strength and function, which will not only contribute to a decline in overall physical performance but also elevate the risk of various age-related diseases. Skeletal muscle atrophy in the microgravity environment is thought to be associated with changes in energy metabolism, protein metabolism, calcium ion homeostasis, myostatin levels, and apoptosis.

View Article and Find Full Text PDF

Fourier energy spectrum centroid: a robust and efficient approach for shear wave speed estimation in ω-K space.

Phys Med Biol

January 2025

Department of Electrical and Electronic Engineering, The University of Hong Kong, Chow Yei Ching 506, Hong Kong, 999077, HONG KONG.

. The propagation speed of a shear wave, whether externally or internally induced, in biological tissues is directly linked to the tissue's stiffness. The group shear wave speed (SWS) can be estimated using a class of time-of-flight (TOF) methods in the time-domain or phase speed-based methods in the frequency domain.

View Article and Find Full Text PDF

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

Mars Sample Return: From collection to curation of samples from a habitable world.

Proc Natl Acad Sci U S A

January 2025

Science Group, Natural History Museum, London SW7 5BD, United Kingdom.

NASA's Mars 2020 mission has initiated collection of samples from Mars' Jezero Crater, which has a wide range of ancient rocks and rock types from lavas to lacustrine sedimentary rocks. The Mars Sample Return (MSR) Campaign, a joint effort between NASA and ESA, aims to bring the Perseverance collection back to Earth for intense scientific investigation. As the first return of samples from a habitable world, there are important challenges to overcome for the successful implementation of the MSR Campaign from the point of sample collection on Mars to the long-term curation of the samples on Earth.

View Article and Find Full Text PDF

The microgravity environment affects sensorimotor adaptation and its neural correlates.

Cereb Cortex

January 2025

Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.

Article Synopsis
  • Astronauts returning to Earth experience changes in sensorimotor behavior, but their adaptability to sensory conflicts in microgravity is less understood.
  • During a study involving tasks performed pre-, in-, and post-flight in an MRI scanner, astronauts showed no change in adaptability but greater aftereffects of adaptation while in microgravity.
  • Post-flight, astronauts exhibited increased brain activity that took up to 90 days to return to pre-flight levels, suggesting that their brains were compensating to maintain performance despite the challenges of microgravity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!