Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The use of routine laboratory biomarkers plays a key role in decision making in the clinical practice of COVID-19, allowing the development of clinical screening tools for personalized treatments. This study performed a short-term longitudinal cluster from patients with COVID-19 based on biochemical measurements for the first 72 h after hospitalization. Clinical and biochemical variables from 1039 confirmed COVID-19 patients framed on the “COVID Data Save Lives” were grouped in 24-h blocks to perform a longitudinal k-means clustering algorithm to the trajectories. The final solution of the three clusters showed a strong association with different clinical severity outcomes (OR for death: Cluster A reference, Cluster B 12.83 CI: 6.11−30.54, and Cluster C 14.29 CI: 6.66−34.43; OR for ventilation: Cluster-B 2.22 CI: 1.64−3.01, and Cluster-C 1.71 CI: 1.08−2.76), improving the AUC of the models in terms of age, sex, oxygen concentration, and the Charlson Comorbidities Index (0.810 vs. 0.871 with p < 0.001 and 0.749 vs. 0.807 with p < 0.001, respectively). Patient diagnoses and prognoses remarkably diverged between the three clusters obtained, evidencing that data-driven technologies devised for the screening, analysis, prediction, and tracking of patients play a key role in the application of individualized management of the COVID-19 pandemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224935 | PMC |
http://dx.doi.org/10.3390/jcm11123327 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!