Laminin, a non-collagenous glycoprotein present in the brain extracellular matrix, helps to maintain blood-brain barrier (BBB) integrity and regulation. Neuroinflammation can compromise laminin structure and function, increasing BBB permeability. The aim of this paper is to determine if neuroinflammation-induced laminin functional changes may serve as a potential biomarker of alterations in the BBB. The 38 publications included evaluated neuroinflammation, BBB disruption, and laminin, and were assessed for quality and risk of bias (protocol registered in PROSPERO; CRD42020212547). We found that laminin may be a good indicator of BBB overall structural integrity, although changes in expression are dependent on the pathologic or experimental model used. In ischemic stroke, permanent vascular damage correlates with increased laminin expression (β and γ subunits), while transient damage correlates with reduced laminin expression (α subunits). Laminin was reduced in traumatic brain injury and cerebral hemorrhage studies but increased in multiple sclerosis and status epilepticus studies. Despite these observations, there is limited knowledge about the role played by different subunits or isoforms (such as 411 or 511) of laminin in maintaining structural architecture of the BBB under neuroinflammation. Further studies may clarify this aspect and the possibility of using laminin as a biomarker in different pathologies, which have alterations in BBB function in common.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224176 | PMC |
http://dx.doi.org/10.3390/ijms23126788 | DOI Listing |
Cell Mol Life Sci
December 2024
Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
Macrophages are versatile myeloid leukocytes with flexible cellular states to perform diverse tissue functions beyond immunity. This plasticity is however often hijacked by diseases to promote pathology. Scanning kinetics of macrophage states by single-cell transcriptomics and flow cytometry, we observed atopic dermatitis drastically exhausted a resident subtype S1.
View Article and Find Full Text PDFMatrix Biol
December 2024
Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL). Electronic address:
The lung is a highly vascularized tissue that often harbors metastases from various extrathoracic malignancies. Lung parenchyma consists of a complex network of alveolar epithelial cells and microvessels, structured within an architecture defined by basement membranes. Consequently, understanding the role of the extracellular matrix (ECM) in the growth of lung metastases is essential to uncover the biology of this pathology and developing targeted therapies.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Evolved.Bio, 280 Joseph Street, Kitchener, Ontario, N2G4Z5, Canada.
Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM).
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
December 2024
From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.
Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).
View Article and Find Full Text PDFiScience
December 2024
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
Tumor neovascularization mediated by endothelial cells (ECs) is essential for ovarian cancer (OC) progression, but interactions between epithelial cells and ECs are not well understood. Here, we analyze single-cell transcriptome of 87,847 epithelial cells and 11,696 ECs from fallopian tubes, primary and metastatic ovarian tumors. Cell differentiation trajectory analysis reveals that fallopian tube cells exhibit a potential development trend toward primary OC epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!