Effect of on Wheat Plants' Biochemical and Molecular Responses, and Yield under Different Water Stress Conditions.

Int J Mol Sci

Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain.

Published: June 2022

Eight strains were evaluated for their potential to protect wheat seedlings against severe (no irrigation within two weeks) water stress (WS). Considering the plant fresh weight and phenotype, T140, which displays 1-aminocyclopropane-1-carboxylic acid deaminase activity and which is able to produce several phytohormones, was selected. The molecular and biochemical results obtained from 4-week-old wheat seedlings linked T140 application with a downregulation in the WS-response genes, a decrease in antioxidant activities, and a drop in the proline content, as well as low levels of hydrogen peroxide and malondialdehyde in response to severe WS. All of these responses are indicative of T140-primed seedlings having a higher tolerance to drought than those that are left untreated. A greenhouse assay performed under high nitrogen fertilization served to explore the long-term effects of T140 on wheat plants subjected to moderate (halved irrigation) WS. Even though all of the plants showed acclimation to moderate WS regardless of T140 application, there was a positive effect exerted by on the level of tolerance of the wheat plants to this stress. Strain T140 modulated the expression of a plant ABA-dependent WS marker and produced increased plant superoxide dismutase activity, which would explain the positive effect of on increasing crop yields under moderate WS conditions. The results demonstrate the effectiveness of T140 as a biostimulant for wheat plants under WS conditions, making them more tolerant to drought.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224292PMC
http://dx.doi.org/10.3390/ijms23126782DOI Listing

Publication Analysis

Top Keywords

wheat plants
12
water stress
8
wheat seedlings
8
t140 application
8
wheat
6
t140
6
wheat plants'
4
plants' biochemical
4
biochemical molecular
4
molecular responses
4

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Mechanistic Insights into the Effects of Aged Polystyrene Nanoplastics on the Toxicity of Cadmium to Triticum Aestivum.

Bull Environ Contam Toxicol

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.

The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.

View Article and Find Full Text PDF

Oral cancer (OC) continues to pose a significant global health challenge, marked by high morbidity and mortality rates despite advances in diagnosis and treatment. Numerous novel potential anticancer drugs have been evaluated, many of which are derived from natural sources, such as microorganisms, plants, and animals. Among these, plant lectins - a distinctive group of proteins and glycoproteins with strong biological activity - have garnered considerable attention over the years.

View Article and Find Full Text PDF

Common wheat is allohexaploid, where it is difficult to obtain homoeolog-distinguished transcriptome data. Lasy-Seq, a type of 3' RNA-seq, is a technology efficient at obtaining homoeolog-distinguished transcriptomes. Here we applied Lasy-Seq to obtain transcriptome data from the seedlings, second leaves, and root tips of 25 common wheat lines mainly from East Asia.

View Article and Find Full Text PDF

Background: Low temperatures disrupt nitrogen metabolism in tobacco, resulting in lower nicotine content in the leaves. 24-epibrassinolide (EBR) is a widely used plant growth regulator known for its roles in enhancing cold tolerance and nitrogen metabolism. Nevertheless, it remains unclear whether EBR enhances leaf nicotine content under low temperature conditions during the mature stage of flue-cured tobacco.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!