https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=35743202&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 357432022022062720220716
1422-006723122022Jun17International journal of molecular sciencesInt J Mol SciNeuroprotective Effects of VEGF in the Enteric Nervous System.675610.3390/ijms23126756Although the enteric nervous system (ENS) functions largely autonomously as part of the peripheral nervous system (PNS), it is connected to the central nervous system (CNS) via the gut-brain axis. In many neurodegenerative diseases, pathological changes occur in addition to gastrointestinal symptoms, such as alpha-synuclein aggregates in Parkinson's disease, which are found early in the ENS. In both the CNS and PNS, vascular endothelial growth factor (VEGF) mediates neuroprotective and neuroregenerative effects. Since the ENS with its close connection to the microbiome and the immune system is discussed as the origin of neurodegenerative diseases, it is necessary to investigate the possibly positive effects of VEGF on enteric neurons. Using laser microdissection and subsequent quantitative RT-PCR as well as immunohistochemistry, for the first time we were able to detect and localize VEGF receptor expression in rat myenteric neurons of different ages. Furthermore, we demonstrate direct neuroprotective effects of VEGF in the ENS in cell cultures. Thus, our results suggest a promising approach regarding neuroprotection, as the use of VEGF (may) prevent neuronal damage in the ENS.HeckingInesIDepartment of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.StegemannLennart NormanLNDepartment of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.TheisVerenaVDepartment of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.VorgerdMatthiasMNeuromuscular Center Ruhrgebiet, Department of Neurology, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.MatschkeVeronikaV0000-0001-9717-4485Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.StahlkeSarahSDepartment of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.TheissCarstenC0000-0001-7983-0143Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Universitaetsstr. 150, Building MA, Level 5, 44780 Bochum, Germany.engJournal Article20220617
SwitzerlandInt J Mol Sci1010927911422-00670Neuroprotective Agents0Vascular Endothelial Growth Factor AIMAnimalsEnteric Nervous SystemmetabolismNeurodegenerative DiseasesmetabolismNeuroprotective AgentsmetabolismpharmacologyParkinson DiseasemetabolismRatsVascular Endothelial Growth Factor AgeneticsmetabolismKDRParkinson’s diseaseVEGFVEGFR-2enteric nervous systemgut–brain axismyenteric plexusneurodegenerative diseasesThe authors declare no conflict of interest.
20225182022613202261520226241232022625602022628602022617epublish35743202PMC922438810.3390/ijms23126756ijms23126756Gershon M.D. The Second Brain. Harper Collins Publishers; New York, NY, USA: 1998. p. 312.Furness J.B., Costa M. Types of nerves in the enteric nervous system. Neuroscience. 1980;5:235–252. doi: 10.1016/0306-4522(80)90067-6.10.1016/0306-4522(80)90067-66154268Furness J.B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 2000;81:87–96. doi: 10.1016/S0165-1838(00)00127-2.10.1016/S0165-1838(00)00127-210869706Kunze W.A.A., Furness J.B. The enteric nervous system and regulation of intestinal motility. Annu. Rev. Physiol. 1999;61:117–142. doi: 10.1146/annurev.physiol.61.1.117.10.1146/annurev.physiol.61.1.11710099684Schäfer K.H., Van Ginneken C., Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat. Rec. 2009;292:1940–1952. doi: 10.1002/ar.21033.10.1002/ar.2103319943347Furness J.B., Callaghan B.P., Rivera L.R., Cho H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol. 2014;817:39–71.24997029Chapelet G., Leclair-Visonneau L., Clairembault T., Neunlist M., Derkinderen P. Can the gut be the missing piece in uncovering PD pathogenesis? Parkinsonism Relat. Disord. 2019;59:26–31. doi: 10.1016/j.parkreldis.2018.11.014.10.1016/j.parkreldis.2018.11.01430448099Stefano G.B., Pilonis N., Ptacek R., Raboch J., Vnukova M., Kream R.M. Gut, Microbiome, and Brain Regulatory Axis: Relevance to Neurodegenerative and Psychiatric Disorders. Cell. Mol. Neurobiol. 2018;38:1197–1206. doi: 10.1007/s10571-018-0589-2.10.1007/s10571-018-0589-2PMC606112529802603Braak H., de Vos R.A., Bohl J., Tredici K. Del Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 2006;396:67–72. doi: 10.1016/j.neulet.2005.11.012.10.1016/j.neulet.2005.11.01216330147Semar S., Klotz M., Letiembre M., Van Ginneken C., Braun A., Jost V., Bischof M., Lammers W.J., Liu Y., Fassbender K., et al. Changes of the enteric nervous system in amyloid-ß protein precursor transgenic mice correlate with disease progression. J. Alzheimer’s Dis. 2013;36:7–20. doi: 10.3233/JAD-120511.10.3233/JAD-12051123531500Kayed R., Lasagna-Reeves C.A. Molecular mechanisms of amyloid oligomers toxicity. J. Alzheimer’s Dis. 2013;33:S67–S78. doi: 10.3233/JAD-2012-129001.10.3233/JAD-2012-12900122531422Lebouvier T., Chaumette T., Damier P., Coron E., Touchefeu Y., Vrignaud S., Naveilhan P., Galmiche J.P., Bruley Des Varannes S., Derkinderen P., et al. Pathological lesions in colonic biopsies during Parkinson’s disease. Gut. 2008;57:1741–1743. doi: 10.1136/gut.2008.162503.10.1136/gut.2008.16250319022934Lebouvier T., Coron E., Chaumette T., Paillusson S., Des Varannes S.B., Neunlist M., Derkinderen P. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol. Motil. 2010;22:e11–e14. doi: 10.1111/j.1365-2982.2009.01368.x.10.1111/j.1365-2982.2009.01368.x19650774Senger D.R., Galli S.J., Dvorak A.M., Perruzzi C.A., Susan Harvey V., Dvorak H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–985. doi: 10.1126/science.6823562.10.1126/science.68235626823562Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Physiol. 2001;280:C1358–C1366. doi: 10.1152/ajpcell.2001.280.6.C1358.10.1152/ajpcell.2001.280.6.C135811350730Zhang Y., Liu X., Zhang J., Li L., Liu C. The expression and clinical significance of PI3K, pAkt and VEGF in colon cancer. Oncol. Lett. 2012;4:763–766. doi: 10.3892/ol.2012.822.10.3892/ol.2012.822PMC350669923205098Theis V., Theiss C. VEGF—A stimulus for neuronal development and regeneration in the CNS and PNS. Curr. Protein Pept. Sci. 2018;19:589–597. doi: 10.2174/1389203719666180104113937.10.2174/138920371966618010411393729299985Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22. doi: 10.1096/fasebj.13.1.9.10.1096/fasebj.13.1.99872925Ferrara N., Gerber H.P., Le Couter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi: 10.1038/nm0603-669.10.1038/nm0603-66912778165Park J.E., Chen H.H., Winer J., Houck K.A., Ferrara N. Placenta Growth Factor. J. Biol. Chem. 1994;269:25646–35654. doi: 10.1016/S0021-9258(18)47298-5.10.1016/S0021-9258(18)47298-57929268Takahashi H., Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 2005;109:227–241. doi: 10.1042/CS20040370.10.1042/CS2004037016104843Darrington E., Zhong M., Vo B.H., Khan S.A. Vascular endothelial growth factor A, secreted in response to transforming growth factor-ß1 under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells. Asian J. Androl. 2012;14:745–751. doi: 10.1038/aja.2011.197.10.1038/aja.2011.197PMC347684222705563Zachary I. Neuroprotective role of vascular endothelial growth factor: Signalling mechanisms, biological function, and therapeutic potential. Neurosignals. 2005;14:207–221. doi: 10.1159/000088637.10.1159/00008863716301836Woolard J., Wang W.Y., Bevan H.S., Qiu Y., Morbidelli L., Pritchard-Jones R.O., Cui T.G., Sugiono M., Waine E., Perrin R., et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004;64:7822–7835. doi: 10.1158/0008-5472.CAN-04-0934.10.1158/0008-5472.CAN-04-093415520188Beazley-Long N., Hua J., Jehle T., Hulse R.P., Dersch R., Lehrling C., Bevan H., Qiu Y., Lagrèze W.A., Wynick D., et al. VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor a in vivo and in vitro. Am. J. Pathol. 2013;183:918–929. doi: 10.1016/j.ajpath.2013.05.031.10.1016/j.ajpath.2013.05.031PMC376376823838428Falk T., Zhang S., Sherman S.J. Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson’s disease. Mol. Neurodegener. 2009;4:49. doi: 10.1186/1750-1326-4-49.10.1186/1750-1326-4-49PMC279940520003314Yasuhara T., Shingo T., Muraoka K., Kameda M., Agari T., Yuan W.J., Hayase H., Hamada H., Borlongan C.V., Date I. Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res. 2005;1053:10–18. doi: 10.1016/j.brainres.2005.05.027.10.1016/j.brainres.2005.05.02716045899Patel N.S., Mathura V.S., Bachmeier C., Beaulieu-Abdelahad D., Laporte V., Weeks O., Mullan M., Paris D. Alzheimer’s ß-amyloid peptide blocks vascular endothelial growth factor mediated signaling via direct interaction with VEGFR-2. J. Neurochem. 2010;112:66–76. doi: 10.1111/j.1471-4159.2009.06426.x.10.1111/j.1471-4159.2009.06426.x19818105Font M.A., Arboix A., Krupinski J. Angiogenesis, Neurogenesis and Neuroplasticity in Ischemic Stroke. Curr. Cardiol. Rev. 2010;6:238–244. doi: 10.2174/157340310791658802.10.2174/157340310791658802PMC299411621804783Rudilosso S., Rodríguez-Vázquez A., Urra X., Arboix A. The Potential Impact of Neuroimaging and Translational Research on the Clinical Management of Lacunar Stroke. Int. J. Mol. Sci. 2022;23:1497. doi: 10.3390/ijms23031497.10.3390/ijms23031497PMC883592535163423Ferrara N., Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr. Rev. 1997;18:4–25. doi: 10.1210/edrv.18.1.0287.10.1210/edrv.18.1.02879034784Clegg L.E., Gabhann F. Mac A computational analysis of in vivo VEGFR activation by multiple co-expressed ligands. PLoS Comput. Biol. 2017;13:e1005445. doi: 10.1371/journal.pcbi.1005445.10.1371/journal.pcbi.1005445PMC537841128319199Matsuzaki H., Tamatani M., Yamaguchi A., Namikawa K., Kiyama H., Vitek M.P., Mitsuda N., Tohyama M. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: Signal transduction cascades. FASEB J. 2001;15:1218–1220. doi: 10.1096/fj.00-0495fje.10.1096/fj.00-0495fje11344093Cui W., Li W., Han R., Mak S., Zhang H., Hu S., Rong J., Han Y. PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. Neurochem. Int. 2011;59:945–953. doi: 10.1016/j.neuint.2011.07.005.10.1016/j.neuint.2011.07.00521781996Veikkola T., Jussila L., Makinen T., Karpanen T., Jeltsch M., Petrova T.V., Kubo H., Thurston G., Mcdonald D.M., Achen M.G., et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001;20:1223–1231. doi: 10.1093/emboj/20.6.1223.10.1093/emboj/20.6.1223PMC14553211250889Hou Y., Choi J.S., Shin Y.J., Cha J.H., Choi J.Y., Chun M.H., Lee M.Y. Expression of vascular endothelial growth factor receptor-3 mRNA in the developing rat cerebellum. Cell. Mol. Neurobiol. 2011;31:7–16. doi: 10.1007/s10571-010-9530-z.10.1007/s10571-010-9530-z21072582Neufeld G., Cohen T., Shraga N., Lange T., Kessler O., Herzog Y. The neuropilins: Multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 2002;12:13–19. doi: 10.1016/S1050-1738(01)00140-2.10.1016/S1050-1738(01)00140-211796239Herrfurth L., Theis V., Matschke V., May C., Marcus K., Theiss C. Morphological plasticity of emerging purkinje cells in response to exogenous VEGF. Front. Mol. Neurosci. 2017;10:2. doi: 10.3389/fnmol.2017.00002.10.3389/fnmol.2017.00002PMC527699628194096Betarbet R., Sherer T.B., MacKenzie G., Garcia-Osuna M., Panov A.V., Greenamyre J.T. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 2000;3:1301–1306. doi: 10.1038/81834.10.1038/8183411100151Sherer T.B., Kim J.H., Betarbet R., Greenamyre J.T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 2003;179:9–16. doi: 10.1006/exnr.2002.8072.10.1006/exnr.2002.807212504863Sherer T.B., Betarbet R., Testa C.M., Seo B.B., Richardson J.R., Kim J.H., Miller G.W., Yagi T., Matsuno-Yagi A., Greenamyre J.T. Mechanism of Toxicity in Rotenone Models of Parkinson’s Disease. J. Neurosci. 2003;23:10756–10764. doi: 10.1523/JNEUROSCI.23-34-10756.2003.10.1523/JNEUROSCI.23-34-10756.2003PMC674098514645467Martinez T.N., Greenamyre J.T. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid. Redox Signal. 2012;16:920–934. doi: 10.1089/ars.2011.4033.10.1089/ars.2011.4033PMC329275321554057Drolet R.E., Cannon J.R., Montero L., Greenamyre J.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 2009;36:96–102. doi: 10.1016/j.nbd.2009.06.017.10.1016/j.nbd.2009.06.01719595768Tanner C.M., Kame F., Ross G.W., Hoppin J.A., Goldman S.M., Korell M., Marras C., Bhudhikanok G.S., Kasten M., Chade A.R., et al. Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect. 2011;119:866–872. doi: 10.1289/ehp.1002839.10.1289/ehp.1002839PMC311482421269927Ramalingam M., Huh Y.J., Lee Y.I. The Impairments of α-Synuclein and Mechanistic Target of Rapamycin in Rotenone-Induced SH-SY5Y Cells and Mice Model of Parkinson’s Disease. Front. Neurosci. 2019;13:1028. doi: 10.3389/fnins.2019.01028.10.3389/fnins.2019.01028PMC676908031611767Hancock D.B., Martin E.R., Mayhew G.M., Stajich J.M., Jewett R., Stacy M.A., Scott B.L., Vance J.M., Scott W.K. Pesticide exposure and risk of Parkinson’s disease: A family-based case-control study. BMC Neurol. 2008;8:6. doi: 10.1186/1471-2377-8-6.10.1186/1471-2377-8-6PMC232301518373838Soker S., Takashima S., Miao H.Q., Neufeld G., Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 1998;92:735–745. doi: 10.1016/S0092-8674(00)81402-6.10.1016/S0092-8674(00)81402-69529250Yasuhara T., Shingo T., Kobayashi K., Takeuchi A., Yano A., Muraoka K., Matsui T., Miyoshi Y., Hamada H., Date I. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur. J. Neurosci. 2004;19:1494–1504. doi: 10.1111/j.1460-9568.2004.03254.x.10.1111/j.1460-9568.2004.03254.x15066146Huang J., Kelly C.P., Bakirtzi K., Villafuerte Gálvez J.A., Lyras D., Mileto S.J., Larcombe S., Xu H., Yang X., Shields K.S., et al. Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nat. Microbiol. 2019;4:269–279. doi: 10.1038/s41564-018-0300-x.10.1038/s41564-018-0300-xPMC655921830510170Bowker R.M., Yan X., Plaen I.G. De Intestinal microcirculation and necrotizing enterocolitis: The vascular endothelial growth factor system. Semin. Fetal Neonatal Med. 2018;23:411–415. doi: 10.1016/j.siny.2018.08.008.10.1016/j.siny.2018.08.00830213591Hecking I., Stegemann L.N., Stahlke S., Theis V., Vorgerd M., Matschke V., Theiss C. Methods to Study the Myenteric Plexus of Rat Small Intestine. Cell. Mol. Neurobiol. 2021:1–11. doi: 10.1007/s10571-021-01181-5.10.1007/s10571-021-01181-5PMC981303534932174May-Zhang A.A., Deal K.K., Southard-Smith E.M. Optimization of Laser-Capture Microdissection for the Isolation of Enteric Ganglia from Fresh-Frozen Human Tissue. J. Vis. Exp. 2018;136:e57762. doi: 10.3791/57762.10.3791/57762PMC604297429985370Zeiss MicroImaging C. PALM Protocols-RNA Handling. [(accessed on 1 December 2021)]. Available online: https://p.widencdn.net/nhtmvl/EN_zeiss-lcm_protocols_rna.Grundmann D., Klotz M., Rabe H., Glanemann M., Schäfer K.H. Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract. Sci. Rep. 2015;5:9226. doi: 10.1038/srep09226.10.1038/srep09226PMC436676225791532