The Regulatory Roles of Mitochondrial Calcium and the Mitochondrial Calcium Uniporter in Tumor Cells.

Int J Mol Sci

Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.

Published: June 2022

Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca in both mitochondria and cytoplasm, thereby regulating cellular Ca homeostasis. Mitochondrial Ca transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca regulation helps diagnosis and therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223557PMC
http://dx.doi.org/10.3390/ijms23126667DOI Listing

Publication Analysis

Top Keywords

mitochondrial calcium
12
tumor cells
12
energy metabolism
12
calcium uniporter
8
mitochondrial
7
regulatory roles
4
roles mitochondrial
4
calcium mitochondrial
4
uniporter tumor
4
mitochondria
4

Similar Publications

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Omega-3 fatty acids supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows.

J Dairy Sci

January 2025

Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel. Electronic address:

Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Omega-3 (n-3) fatty acid (FA) supplementation lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium.

View Article and Find Full Text PDF

Polycystic ovarian syndrome (PCOS) is a complex endocrine-metabolic disorder, and multiple factors contribute to its pathophysiology. The current study assessed a PCOS-like animal model induced by consuming a high-fat sugar (HFHS) diet and compared the treatment outcome of mitochondrial-targeted antioxidants versus heat therapy. Sixty rats were divided into the following study groups: three control groups (negative and positive for the treatments used), HFHS, hot tub therapy (HTT) treatment, and MitoQ10 treatment (500 µmol/L MitoQ10 in clean drinking water daily, from week fourteen till week twenty-two of the study).

View Article and Find Full Text PDF

Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the mA modification of calsequestrin 2 in diabetic cardiomyopathy.

Front Med

January 2025

Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.

Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM.

View Article and Find Full Text PDF

Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders.

ACS Pharmacol Transl Sci

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Sigma 1 receptor (S1R) is a multifunctional, ligand-activated protein located in the membranes of the endoplasmic reticulum (ER). It mediates a variety of neurological disorders, including epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease. The wide neuroprotective effects of S1R agonists are achieved by a variety of pro-survival and antiapoptotic S1R-mediated signaling functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!