Every ecosystem shows multiple levels of species interactions, which are often difficult to isolate and to classify regarding their specific nature. For most of the observed interactions, it comes down to either competition or consumption. The modes of consumption are various and defined by the nature of the consumed organism, e.g., carnivory, herbivory, as well as the extent of the consumption, e.g., grazing, parasitism. While the majority of consumers are animals, carnivorous plants can also pose a threat to arthropods. Water fleas of the family Daphniidae are keystone species in many lentic ecosystems. As most abundant filter feeders, they link the primary production to higher trophic levels. As a response to the high predatory pressures, water fleas have evolved various inducible defenses against animal predators. Here we show the first example, to our knowledge, in of such inducible defenses of an animal against a coexisting plant predator, i.e., the carnivorous bladderwort ( Lehm, Lentibulariaceae). When the bladderwort is present, shows changes in morphology, life history and behavior. While the morphological and behavioral adaptations improve 's survival rate in the presence of this predator, the life-history parameters likely reflect trade-offs for the defense.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223663 | PMC |
http://dx.doi.org/10.3390/ijms23126474 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
Jiangsu Key Laboratory for Bioaffiliationersity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, 210023, China.
Atrazine is a predominant herbicide globally, and its residues are commonly found in natural water bodies due to its extensive use. Atrazine is known for its detrimental effects on the reproductive abilities of aquatic plants and animals. Our study explored the impact of maternal exposure to atrazine on the survival and performance of offspring using the water flea Daphnia magna as a model organism.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden.
Subarctic lakes are sentinels of climate change, showing responses in their physical, chemical, and biological properties. However, climate-induced changes in invertebrate diversity and their underlying mechanisms are not fully understood. We explored the relationship between past climate change and taxonomic composition of subfossil cladocerans in a subarctic lake during the last ca.
View Article and Find Full Text PDFPeerJ
December 2024
Biology Department, Queen's University, Kingston, Ontario, Canada.
Trait variation in predator populations can influence the outcome of predator-prey dynamics, with consequences for trophic dynamics and ecosystem functioning. However, the influence of prey trait variation on the impacts of predators is not well understood, especially for introduced predators where variation in prey can shape invasion outcomes. In this study, we investigated if intra-specific differences in vertical position of influenced the impacts of the invasive zooplankton predator, on plankton communities.
View Article and Find Full Text PDFPeerJ
December 2024
Department Aquatic Ecotoxicology, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt, Germany.
Sixty percent of discrete surface water bodies in Europe do not meet the requirements for good ecological and chemical status and in Germany, the situation is even worse with over 90% of surface water bodies failing to meet the threshold. In addition to hydromorphological degradation, intensive land use and invasive species, chemical pollution is primarily considered to be responsible for the inadequate ecological status of the water bodies. As a quantitatively important source of micropollutants, wastewater treatment plants (WWTPs) represent an important entry path for chemical stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!