AI Article Synopsis

Article Abstract

Surfactant enhanced aquifer remediation is a common treatment to remediate polluted sites with the inconvenience that the effluent generated must be treated. In this work, a complex mixture of chlorobenzene and dichlorobenzenes in a non-ionic surfactant emulsion has been carried out by volatilization. Since this techhnique is strongly affected by the presence of the surfactant, modifying the vapour pressure, Pv0, and activity coefficient, γ, a correlation between Pvj0γj and surfactant concentration and temperature was proposed for each compound, employing the Surface Response Methodology (RSM). Volatilization experiments were carried out at different temperatures and gas flow rates. A good agreement between experimental and predicted remaining SVCOCs during the air stripping process was obtained, validating the thermodynamic parameters obtained with RSM. Regarding the results of volatilization, at 60 °C 80% of SVCOCs were removed after 6 h, and the surfactant capacity was almost completely recovered so the solution can be recycled in soil flushing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223721PMC
http://dx.doi.org/10.3390/ijerph19127547DOI Listing

Publication Analysis

Top Keywords

non-ionic surfactant
8
aquifer remediation
8
rsm volatilization
8
surfactant
6
surfactant recovery
4
recovery surfactant
4
surfactant enhancement
4
enhancement aquifer
4
remediation effluent
4
effluent chlorobenzenes
4

Similar Publications

Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery.

AAPS PharmSciTech

January 2025

Consulting, Fort Collins, Colorado, USA.

Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on developing a green and effective pesticide formulation using nanoemulsions, including adjuvants like Calcium Alkyl Benzene Sulphonate (Atlox 4838B) and trisiloxane ethoxylate (ARGAL), aimed at targeting the pest Sitophilus oryzae.
  • Results indicate that all formulations achieved nanoscale droplets, with scanning electron microscopy revealing their spherical shapes, while dynamic light scattering showed variations in size based on the presence of adjuvants.
  • The nanoemulsions demonstrated good stability under various conditions, with most formulations having acidic to neutral pH levels, and adjuvants enhanced their stability by altering droplet characteristics and increasing kinetic stability.
View Article and Find Full Text PDF

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.

View Article and Find Full Text PDF

: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV).

View Article and Find Full Text PDF

Choline-acetyltransferase (ChAT) is the key cholinergic enzyme responsible for the biosynthesis of acetylcholine (ACh), a crucial signaling molecule with both canonical neurotransmitter function and auto- and paracrine signaling activity in non-neuronal cells, such as lymphocytes and astroglia. Cholinergic dysfunction is linked to both neurodegenerative and inflammatory diseases. In this study, we investigated a serendipitous observation, namely that the catalytic rate of human recombinant ChAT (rhChAT) protein greatly differed in buffered solution in the presence and absence of Triton X-100 (TX100).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!