Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although extensive research has shown the pathological effect of fine and ultrafine airborne particles, clear evidence of association of environmental exposure to them and inflammatory changes in human nasal mucosa is missing. Meanwhile, pathogenesis of chronic rhinosinusitis, despite being a disease with high prevalence in the population, is still unclear. The increasing evidence of the pro-inflammatory properties of these particles raises the question of their possible role in chronic rhinosinusitis. The presented study focused on detection of microsized anorganic particles and clusters of nanosized anorganic particles in the nasal mucosa of patients with chronic rhinosinusitis by Raman microspectroscopy and comparison of their composition to histologic findings. The results were compared to the findings in mucosa obtained from cadavers with no history of chronic rhinosinusitis. Solid particles were found in 90% of tissue samples in the group with chronic rhinosinusitis, showing histologic signs of inflammation in 95%, while in the control group, the particles were found in 20% of samples, with normal histologic findings in all of them. The main detected compounds were graphite, TiO, amorphous carbon, calcite, ankerite and iron compounds. The results are in accordance with the premise that exogenous airborne particles interact with the nasal mucosa and possibly deposit in it in cases where the epithelial barrier is compromised in chronic rhinosinusitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224182 | PMC |
http://dx.doi.org/10.3390/ijerph19127269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!