Characteristics and Antioxidant Activity of Walnut Oil Using Various Pretreatment and Processing Technologies.

Foods

Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan 430023, China.

Published: June 2022

This study was the first time the effects of pretreatment technology (microwave roasting, MR; oven roasting, OR; steaming roasting, SR) and processing technology (screw pressing, SP; aqueous enzymatic extraction, AEE; subcritical butane extraction, SBE) on the quality (physicochemical properties, phytochemical content, and antioxidant ability) of walnut oil were systematically compared. The results showed that the roasting pretreatment would reduce the lipid yield of walnut oil and SBE (59.53−61.19%) was the processing method with the highest yield. SR-AEE oil provided higher acid value (2.49 mg/g) and peroxide value (4.16 mmol/kg), while MR-SP oil had the highest content of polyunsaturated fatty acid (73.69%), total tocopherol (419.85 mg/kg) and total phenolic compounds (TPC, 13.12 mg/kg). The DPPH-polar and ABTS free radicals’ scavenging abilities were accorded with SBE > AEE > SP. SBE is the recommended process for improving the extraction yield and antioxidant ability of walnut oil. Hierarchical cluster analysis showed that processing technology had a greater impact on walnut oil than pretreatment technology. In addition, multiple linear regression revealed C18:0, δ-tocopherol and TPC had positive effects on the antioxidant ability of walnut oil, while C18:1n-9, C18:3n-3 and γ-tocopherol were negatively correlated with antioxidant activity. Thus, this a promising implication for walnut oil production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222277PMC
http://dx.doi.org/10.3390/foods11121698DOI Listing

Publication Analysis

Top Keywords

walnut oil
28
antioxidant ability
12
ability walnut
12
oil
9
antioxidant activity
8
oil pretreatment
8
pretreatment technology
8
processing technology
8
walnut
7
characteristics antioxidant
4

Similar Publications

Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network.

Food Chem

December 2024

Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China. Electronic address:

This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na], [TG + NH].

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

The walnut tree as a source of progesterone for reproductive control in goats.

Animal

December 2024

Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France.

Intravaginal sponges impregnated with the progesterone (P4) analogue fluorogestone acetate (FGA) induce synchronous oestrous behaviour and normal ovulatory cycle in goats. To explore alternatives using natural P4 from plants, we developed a method of ethanolic extraction and a specific enzyme immunoassay (EIA) to measure P4 in the different parts of the walnut tree Juglans regia. We found a very high concentration of P4, specifically in the leaves of the three most common French varieties (∼100 mg/kg of DM) but not in flowers, fruits, septa, husk, oil or cake.

View Article and Find Full Text PDF

, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. is a crucial regulator of flower bud development in .

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disorder marked by the degeneration of dopaminergic neurons and the buildup of α-synuclein aggregates. The current treatments focus on symptom relief, with no drugs available to halt disease progression. This has prompted interest in plant-based extracts as alternative therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!