In this investigation, a new approach for developing a sensitive lateral flow immunoassay (LFIA) was proposed for the detection of the hazardous marine toxin okadaic acid (OA). It is based on the indirect format with anti-species antibodies labeled by gold nanoparticles (AuNPs) and cascade signal amplification. The latter is performed by first passing a mixture of anti-OA antibodies and a tested sample along the immunochromatographic test strip and then performing several cycles of the interaction of anti-species antibodies conjugated with AuNPs with free antibodies, which bind to anti-species antibodies but are not specific to the target analyte. As a result, branched aggregates are formed, due to which the colorimetric signal intensification occurs. The developed test system enabled the detection of OA with an instrumental detection limit of 30 pg/mL and a cutoff of 1 ng/mL, which exceeds these characteristics in the LFIA without amplification by 7 and 2 times, respectively. The OA recoveries from seawater, fish, and seafood varied from 76.9% to 126%. The test system may be required for point-of-care monitoring of samples for phycotoxin contamination; the developed principle of signal amplification can be used in cases where highly sensitive detection of trace amounts of a contaminant is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222646 | PMC |
http://dx.doi.org/10.3390/foods11121691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!