Pear ( L.) is one of the most important temperate fruit crops worldwide, with considerable economic value and significant health benefits. Red-skinned pears have an attractive appearance and relatively high anthocyanin accumulation, and are especially favored by customers. Abnormal weather conditions usually reduce the coloration of red pears. The application of exogenous sucrose obviously promotes anthocyanins accumulation in 'Kuerle Xiangli' ( Yü); however, the underlying molecular mechanism of sucrose-mediated fruit coloration remains largely unknown. In this study, comprehensive transcriptome analysis was performed to identify the essential regulators and pathways associated with anthocyanin accumulation. The differentially expressed genes enriched in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes items were analyzed. The transcript levels of some anthocyanin biosynthetic regulatory genes and structural genes were significantly induced by sucrose treatment. Sucrose application also stimulated the expression of some sugar transporter genes. Further RT-qPCR analysis confirmed the induction of anthocyanin biosynthetic genes. Taken together, the results revealed that sucrose promotes pear coloration most likely by regulating sugar metabolism and anthocyanin biosynthesis, and this study provides a comprehensive understanding of the complex molecular mechanisms underlying the coloration of red-skinned pear.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222499 | PMC |
http://dx.doi.org/10.3390/genes13061064 | DOI Listing |
Food Funct
January 2025
Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in under oleic acid (OA) exposure.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France.
The genetic basis of type 1 red-flesh color development in apple () depends upon a particular allele of the gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700 009, India.
Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.
View Article and Find Full Text PDFPlants (Basel)
January 2025
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!