Non-coding RNAs, especially microRNAs (miRNAs), play an important role in skeletal muscle growth and development. miR-377 regulates many basic biological processes and plays a key role in tumor cell proliferation, migration and apoptosis. Nevertheless, the function of miR-377 during skeletal muscle development and how it regulates skeletal muscle satellite cells (SMSCs) remains unclear. In the present study, we proposed to elucidate the regulatory mechanism of miR-377 in the proliferation and differentiation of bovine primary SMSCs. Our results showed that miR-377 can significantly inhibit the proliferation of SMSCs. In addition, we found that miR-377 can reduce myotube formation and restrain skeletal myogenic differentiation. Moreover, the results obtained from the biosynthesis and dual luciferase experiments showed that FHL2 was the target gene of miR-377. We further probed the function of FHL2 in muscle development and found that FHL2 silencing significantly suppressed the proliferation and differentiation of SMSCS, which is contrary to the role of miR-377. Furthermore, FHL2 interacts with Dishevelled-2 (Dvl2) to enable Wnt/β-catenin signaling pathway, consequently regulating skeletal muscle development. miR-377 negatively regulates the Wnt/β-catenin signaling pathway by targeting FHL2-mediated Dvl2. Overall, these findings demonstrated that miR-377 regulates the bovine SMSCs proliferation and differentiation by targeting FHL2 and attenuating the Wnt/β-catenin signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223022 | PMC |
http://dx.doi.org/10.3390/genes13060947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!