A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amplification, Inference, and the Manifestation of Objective Classical Information. | LitMetric

Amplification, Inference, and the Manifestation of Objective Classical Information.

Entropy (Basel)

Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Published: June 2022

Our everyday reality is characterized by objective information-information that is selected and amplified by the environment that interacts with quantum systems. Many observers can accurately infer that information indirectly by making measurements on fragments of the environment. The correlations between the system, S, and a fragment, F, of the environment, E, is often quantified by the quantum mutual information, or the Holevo quantity, which bounds the classical information about S transmittable by a quantum channel F. The latter is a quantum mutual information but of a classical-quantum state where measurement has selected outcomes on S. The measurement generically reflects the influence of the remaining environment, E/F, but can also reflect hypothetical questions to deduce the structure of SF correlations. Recently, Touil et al. examined a different Holevo quantity, one from a quantum-classical state (a quantum S to a measured F). As shown here, this quantity upper bounds any accessible classical information about S in F and can yield a tighter bound than the typical Holevo quantity. When good decoherence is present-when the remaining environment, E/F, has effectively measured the pointer states of S-this accessibility bound is the accessible information. For the specific model of Touil et al., the accessible information is related to the error probability for optimal detection and, thus, has the same behavior as the quantum Chernoff bound. The latter reflects amplification and provides a universal approach, as well as a single-shot framework, to quantify records of the missing, classical information about S.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223115PMC
http://dx.doi.org/10.3390/e24060781DOI Listing

Publication Analysis

Top Keywords

holevo quantity
12
quantum mutual
8
remaining environment
8
environment e/f
8
quantum
6
environment
5
amplification inference
4
inference manifestation
4
manifestation objective
4
classical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!