This study reports the numerical and experimental characterization of a standard immobilization system currently being used to treat simple oblique bone fractures of femoral diaphyses. The procedure focuses on the assessment of the mechanical behavior of a bone stabilized with a dynamic compression plate (DCP) in a neutralization function, associated to a lag screw, fastened with surgical screws. The non-linear behavior of cortical bone tissue was revealed through four-point bending tests, from which damage initiation and propagation occurred. Since screw loosening was visible during the loading process, damage parameters were measured experimentally in independent pull-out tests. A realistic numerical model of the DCP-femur setup was constructed, combining the evaluated damage parameters and contact pairs. A mixed-mode (I+II) trapezoidal damage law was employed to mimic the mechanical behavior of both the screw-bone interface and bone fractures. The numerical model replicated the global behavior observed experimentally, which was visible by the initial stiffness and the ability to preview the first loading peak, and bone crack satisfactorily.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219623 | PMC |
http://dx.doi.org/10.3390/biology11060940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!