Seipin, a protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 () gene, is famous for its key role in the biogenesis of lipid droplets and type 2 congenital generalised lipodystrophy (CGL2). gene mutations result in genetic diseases including CGL2, progressive encephalopathy with or without lipodystrophy (also called Celia's encephalopathy), and -associated motor neuron diseases. Abnormal expression of seipin has also been found in hepatic steatosis, neurodegenerative diseases, glioblastoma stroke, cardiac hypertrophy, and other diseases. In the current study, we comprehensively summarise phenotypes, underlying mechanisms, and treatment of human diseases caused by gene mutations, paralleled by animal studies including systemic or specific gene knockout, or gene overexpression. In various animal models representing diseases that are not related to mutations, differential expression patterns and functional roles of seipin are also described. Furthermore, we highlight the potential therapeutic approaches by targeting seipin or its upstream and downstream signalling pathways. Taken together, restoring adipose tissue function and targeting seipin-related pathways are effective strategies for CGL2 treatment. Meanwhile, seipin-related pathways are also considered to have potential therapeutic value in diseases that are not caused by gene mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221541 | PMC |
http://dx.doi.org/10.3390/biom12060840 | DOI Listing |
Methods Mol Biol
January 2025
Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
The establishment of reliable and efficient systems for genome editing in Phytophthora is very important for studying gene functions. Here, step-by-step methods for CRISPR/Cas9-based gene knockout and in situ complementation for Phytophthora sojae are presented. These steps include the sgRNA design, Cas9-sgRNA plasmid construction, homologous replacement, complementation vector construction, P.
View Article and Find Full Text PDFVet Sci
December 2024
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan 528225, China.
Orf (ORF) is an acute disease caused by the Orf virus (ORFV), and poses a certain threat to animal and human health. Live attenuated vaccines play an important role in the prevention and control of ORF. The effectiveness of the live attenuated Orf virus vaccine is influenced by several factors, including the genomic match between the vaccine strain and circulating epidemic strains.
View Article and Find Full Text PDFVet Sci
November 2024
Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA.
serovar Infantis has emerged as a prevalent foodborne pathogen in poultry with significant global health implications. This study investigates the molecular characteristics influencing virulence in a Infantis rough variant collected from a poultry farm in the USA. In this study, whole genome sequencing and comparative genomics were performed on smooth and rough poultry Infantis isolates, while chicken embryo lethality assay was conducted to assess their virulence.
View Article and Find Full Text PDFMethods Protoc
December 2024
General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.
is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol Direct reagent, PrepMan Ultra Sample Preparation Reagent (USPR), and Chelex 100-to identify an optimal method to extract DNA from individual , as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR.
View Article and Find Full Text PDFMethods Protoc
December 2024
Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecological malignancy, and there is still an unmet medical need to deepen basic research on its origins and mechanisms of progression. Patient-derived organoids of high-grade serous ovarian cancer (HGSOC-PDO) are a powerful model to study the complexity of ovarian cancer as they maintain, in vitro, the mutational profile and cellular architecture of the cancer tissue. Genetic modifications by lentiviral transduction allow novel insights into signaling pathways and the potential identification of biomarkers regarding the evolution of drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!