and are the most recognized tumor-suppressor genes involved in double-strand DNA break repair through the homologous recombination (HR) system. Widely known for its role in hereditary cancer, HR deficiency (HRD) has turned out to be critical beyond breast and ovarian cancer: for prostate and pancreatic cancer also. The relevance for the identification of these patients exceeds diagnostic purposes, since results published from clinical trials with poly-ADP ribose polymerase (PARP) inhibitors (PARPi) have shown how this type of targeted therapy can modify the long-term evolution of patients with HRD. Somatic aberrations in other HRD pathway genes, but also indirect genomic instability as a sign of this DNA repair impairment (known as HRD scar), have been reported to be relevant events that lead to more frequently than expected HR loss of function in several tumor types, and should therefore be included in the current diagnostic and therapeutic algorithm. However, the optimal strategy to identify HRD and potential PARPi responders in cancer remains undefined. In this review, we summarize the role and prevalence of HRD across tumor types and the current treatment landscape to guide the agnostic targeting of damaged DNA repair. We also discuss the challenge of testing patients and provide a special insight for new strategies to select patients who benefit from PARPi due to HRD scarring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221128 | PMC |
http://dx.doi.org/10.3390/cancers14122950 | DOI Listing |
Nanoscale Horiz
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States.
Heat Shock Factor 1 (HSF1) is a major transcriptional factor regulating the heat shock response and has become a potential target for overcoming cancer chemoresistance. This review comprehensively examines HSF1's role in chemoresistance and its potential as a therapeutic target in cancer. We explore the complex, intricate mechanism that regulates the activation of HSF1, HSF1's function in promoting resistance to chemotherapy, and the strategies used to manipulate HSF1 for therapeutic benefit.
View Article and Find Full Text PDFWorld J Oncol
February 2025
The First Clinical Medical School, Jinan University, Guangzhou 510632, Guangdong, China.
Background: Thymidine kinases (TKs) are key enzymes involved in DNA synthesis and repair, with alterations in their expression associated with various cancers. Thymidine kinase 1 (TK1) and TK2 are cytosolic enzyme proteins that catalyze the addition of a gamma-phosphate group to thymidine. The existing literature on TK1 in cervical squamous cell carcinoma (CESC) fails to address the clinical role of TK1 overexpression and its possible molecular mechanism in CESC.
View Article and Find Full Text PDFJ Toxicol Environ Health A
January 2025
Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
This study aimed to examine the dose-response effects of polyphenon-60 derived from green tea (P60-GT) on hexavalent chromium [Cr(VI)]-induced genotoxic damage and apoptosis. Male Hsd:ICR mice were divided into 4 groups: (1) Control (vehicle only), (2) P60-GT (15, 30, or 45 mg/kg gavage), (3) Cr(VI) (20 mg/kg of CrO intraperitoneally), and (4) P60-GT+CrO (P60-GT administered 4 hr before CrO). Peripheral blood samples were collected at 24, 48, and 72 hr to assess the number of micronuclei (MN), apoptosis, and cell viability, while plasma 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were measured at 0 and 48 hr.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.
Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!