Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inflammation plays a vital role in regulating fibrotic processes. Beside their classical role in extracellular matrix synthesis and remodeling, fibroblasts act as immune sentinel cells participating in regulating immune responses. The human xylosyltransferase-I (XT-I) catalyzes the initial step in proteoglycan biosynthesis and was shown to be upregulated in normal human dermal fibroblasts (NHDF) under fibrotic conditions. Regarding inflammation, the regulation of XT-I remains elusive. This study aims to investigate the effect of lipopolysaccharide (LPS), a prototypical pathogen-associated molecular pattern, and the damage-associated molecular pattern adenosine triphosphate (ATP) on the expression of and XT-I activity of NHDF. We used an in vitro cell culture model and mimicked the inflammatory tissue environment by exogenous LPS and ATP supplementation. Combining gene expression analyses, enzyme activity assays, and targeted gene silencing, we found a hitherto unknown mechanism involving the inflammasome pathway components cathepsin B (CTSB) and caspase-1 in XT-I regulation. The suppressive role of CTSB on the expression of was further validated by the quantification of expression in fibroblasts from patients with the inflammation-associated disease Pseudoxanthoma elasticum. Altogether, this study further improves the mechanistic understanding of inflammatory XT-I regulation and provides evidence for fibroblast-targeted therapies in inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220250 | PMC |
http://dx.doi.org/10.3390/biomedicines10061451 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!