A Narrative Review of Tc-Aprotinin in the Diagnosis of Cardiac Amyloidosis and a New Life for an Unfairly Abandoned Drug.

Biomedicines

IRCCS Fondazione Policlinico San Matteo, Nuclear Medicine Unit, I-27100 Pavia, Italy.

Published: June 2022

Several studies investigated the use of Tc-labelled Aprotinin as an amyloid seeker some years ago. In vitro tests showed high binding affinity for several types of amyloid fibrils accompanied by an excellent specificity. Initial human studies demonstrated good accuracy in detecting cardiac involvement. Scintigraphy results were confirmed in a group of 28 endomyocardial biopsies. Unfortunately, clinical studies were halted because of a temporary suspension of the vector protein (Trasylol) and public health concerns over prion contamination of the bovine origin compound. To obviate these limitations, efforts have been made to label a recombinant Aprotinin with 99mTc, which exhibits the same affinity for h-insulin fibrils. With the aim of developing a PET tracer, the same recombinant protein was labeled with Gallium. The introduction of a bifunctional chelator did not affect fibril affinity. Finally, a synthetic peptidic fragment, the cyclic 30-51 SS, was synthetized. After direct technetium labeling, an impressive increase in affinity was demonstrated. This peptide appears to be a potential candidate for Gallium labeling through a bifunctional chelator for PET imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219762PMC
http://dx.doi.org/10.3390/biomedicines10061377DOI Listing

Publication Analysis

Top Keywords

bifunctional chelator
8
narrative review
4
review tc-aprotinin
4
tc-aprotinin diagnosis
4
diagnosis cardiac
4
cardiac amyloidosis
4
amyloidosis life
4
life unfairly
4
unfairly abandoned
4
abandoned drug
4

Similar Publications

: Fibroblast activation protein (FAP)-targeted theranostic radiopharmaceuticals have shown desired tumor-to-background organ selectivity due to the ubiquitous presence of FAP within the tumor microenvironment. However, suboptimal tumor retention and fast clearance have hindered their use to deliver effective cancer therapies. With well-documented FAP-targeting moieties and linkers appending them to optimal chelators, the development of copper radiopharmaceuticals has attracted considerable interest, given the fact that an ideal theranostic pair of copper radionuclides (Cu: t = 12.

View Article and Find Full Text PDF

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy.

J Med Chem

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.

View Article and Find Full Text PDF

Radiometal chelator conjugation is a cornerstone of radioimmunotherapy (RIT). Continued interest in selective placement of chelators remains an active topic of discussion in the field. With several simple site-specific methods being recently reported, it was of interest to investigate the benefits and potential drawbacks of the site-specific method with a full comparison to a more typical random conjugation method that is currently utilized in clinical applications.

View Article and Find Full Text PDF

Rare genetic disorders are low in prevalence and hence there is little or no attention paid to them in the mainstream medical industry. One of the ultra-rare neuromuscular disorders, GNE myopathy is caused due to biallelic mutations in the bifunctional enzyme, GNE (UDP N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase). It catalyses the rate-limiting step in sialic acid biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!