can cause a plethora of life-threatening infections. Antibiotics have been extensively used to treat infections. However, when antibiotics are used at sub-inhibitory concentrations, especially for β-lactam antibiotics, they may enhance staphylococcal pathogenicity and exacerbate the infection. The combination of antivirulence agents and antibiotics may be a novel approach to controlling antibiotic-induced pathogenicity. We have illustrated that under in vitro conditions, antivirulence agent M21, when administered concurrently with ampicillin, suppressed the expression and production of virulence factors induced by ampicillin. In a mouse peritonitis model, M21 reduced bacterial load irrespective of administration of ampicillin. In a bacteremia model, combinatorial treatment consisting of ampicillin or ceftazidime and M21 increased the survival rate of mice and reduced cytokine abundance, suggesting the suppression of antibiotic-induced virulence by M21. Different from traditional antibiotic adjuvants, an antivirulence agent may not synergistically inhibit bacterial growth in vitro, but effectively benefit the host in vivo. Collectively, our findings from this study demonstrated the benefits of antivirulence-antibiotic combinatorial treatment against infections and provide a new perspective on the development of antibiotic adjuvants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219823PMC
http://dx.doi.org/10.3390/antibiotics11060819DOI Listing

Publication Analysis

Top Keywords

antivirulence agent
12
β-lactam antibiotics
8
infections antibiotics
8
combinatorial treatment
8
antibiotic adjuvants
8
antibiotics
5
antivirulence
4
agent adjuvant
4
adjuvant β-lactam
4
antibiotics treating
4

Similar Publications

Prior studies examined Acidocin 4356's antibacterial and antivirulence effects against Pseudomonas aeruginosa, including cell membrane penetration abilities. Building on prior research, an in-vitro co-culture of human cells was established to evaluate the selectivity of Acidocin (ACD) by concurrently cultivating human cells and bacterial pathogens. This study evaluated the antibacterial effectiveness of ACD against Acinetobacter baumannii and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili.

Microb Biotechnol

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.

The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Exploring the antivirulence potential of phenolic compounds to inhibit quorum sensing in Pseudomonas aeruginosa.

World J Microbiol Biotechnol

January 2025

Food Research Center (FoRC), Laboratory of Food Microbiology, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil.

Bacteria coordinate gene expression in a cell density-dependent manner in a communication process called quorum sensing (QS). The expression of virulence factors, biofilm formation and enzyme production are QS-regulated phenotypes that can interfere in human health. Due to this importance, there is great interest in inhibiting QS, comprising an anti-virulence strategy.

View Article and Find Full Text PDF

In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!