Resistance to trimethoprim and other antibiotics targeting dihydrofolate reductase may arise in bacteria harboring an atypical, plasmid-encoded, homotetrameric dihydrofolate reductase, called R67 DHFR. Although developing inhibitors to this enzyme may be expected to be promising drugs to fight trimethoprim-resistant strains, there is a paucity of reports describing the development of such molecules. In this manuscript, we describe the design of promising lead compounds to target R67 DHFR. Density-functional calculations were first used to identify the modifications of the pterin core that yielded derivatives likely to bind the enzyme and not susceptible to being acted upon by it. These unreactive molecules were then docked to the active site, and the stability of the docking poses of the best candidates was analyzed through triplicate molecular dynamics simulations, and compared to the binding stability of the enzyme-substrate complex. Molecule ([6-(methoxymethyl)-4-oxo-3,7-dihydro-4-pyrano[2,3-d]pyrimidin-2-yl]methyl-guanidinium) was shown by this methodology to afford extremely stable binding towards R67 DHFR and to prevent simultaneous binding to the substrate. Additional docking and molecular dynamics simulations further showed that this candidate also binds strongly to the canonical prokaryotic dihydrofolate reductase and to human DHFR, and is therefore likely to be useful to the development of chemotherapeutic agents and of dual-acting antibiotics that target the two types of bacterial dihydrofolate reductase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220120 | PMC |
http://dx.doi.org/10.3390/antibiotics11060779 | DOI Listing |
Signal Transduct Target Ther
January 2025
The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160014, India. Electronic address:
A series of multi-target organoselenides 3a-h has been synthesized with the advantages of a simple operation, and good yields of 66-89 % escorted by mechanistic enlightenment. The compounds 3b, 3c continued to exist as orthorhombic and trigonal, whereas 3d exist as monoclinic confirmed by the X-ray crystallography. Organoselenides 3c and 3f displayed the highest % radical scavenging potential with % inhibition of 98.
View Article and Find Full Text PDFFront Chem
December 2024
Laboratory of Spectroscopy, Molecular Modelling, Materials, Nanomaterial, Water and Environment, CERNE2D, Mohammed V University in Rabat, Faculty of Science, Rabat, Morocco.
Introduction: Morocco is home to a remarkable diversity of flora, including several species from the Artemisia genus. This study aims to thoroughly examine the chemical composition of essential oils derived from Artemisia species and assess their antibacterial and antioxidant properties through in vitro experiments and in silico simulations.
Methods: Samples of Artemisia herba-alba Asso.
Infect Drug Resist
December 2024
Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: pneumonia (PJP) shows a high fatality rate in non-HIV patients. However, there are limited data on drug resistance-related gene mutations in these patients. This study aimed to describe the prevalence of mutations in the dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) genes of in non-HIV patients in China, providing a reference for drug usage.
View Article and Find Full Text PDFBiomed Chromatogr
January 2025
Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institution, Mirza, Assam, India.
Naga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!