Caries lesions during cement repairs are a severe issue, and developing a unique antimicrobial restorative biomaterial can help to reduce necrotic lesion recurrence. As a result, extract was used to biosynthesize copper nanoparticles (TVE-CuNPs) exhibiting different characteristics (TVE). Along with TVE-CuNPs, commercial silver nanoparticles (AgNPs) and metronidazole were combined with glass ionomer cement (GIC) to test its antibacterial efficacy and compressive strength. FTIR, XRD, UV-Vis spectrophotometry, and TEM were applied to characterize the TVE-CuNPs. Additionally, AgNPs and TVE-CuNPs were also combined with metronidazole and GIC. The modified GIC samples were divided into six groups, where groups 1 and 2 included conventional GIC and GIC with 1.5% metromidazole, respectively; group 3 had GIC with 0.5% TVE-CuNPs, while group 4 had 0.5% TVE-CuNPs with metronidazole in 1.5%; group 5 had GIC with 0.5% AgNPs, and group 6 had 0.5% AgNPs with metronidazole at 1.5%. An antimicrobial test was performed against () and () by the disc diffusion method and the modified direct contact test (MDCT). GIC groups 4 and 6 demonstrated a greater antimicrobial efficiency against the two tested strains than the other groups. In GIC groups 4 and 6, the combination of GIC with two antimicrobial agents, 1.5% metronidazole and 0.5% TVE-CuNPs or AgNPs, enhanced the antimicrobial efficiency when compared to that of the other groups with or without a single agent. GIC group specimens combined with nanosilver and nanocopper had similar mean compressive strengths when compared to the other GIC groups. Finally, the better antimicrobial efficacy of GIC boosted by metronidazole and the tested nanoparticles against the tested strains may be relevant for the future creation of more efficient and modified restorations to reduce dental caries lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220143PMC
http://dx.doi.org/10.3390/antibiotics11060756DOI Listing

Publication Analysis

Top Keywords

gic
13
05% tve-cunps
12
gic groups
12
glass ionomer
8
ionomer cement
8
dental caries
8
caries lesions
8
agnps metronidazole
8
group gic
8
gic 05%
8

Similar Publications

Objective This in vitro study evaluated the impact of different time intervals on the color stability of glass ionomer cement (GIC) and composite materials bonded to teeth treated with silver diamine fluoride (SDF). Specifically, the study sought to determine if immediate or delayed application of these restorative materials affects the degree of staining caused by SDF. Materials and methods Twenty-eight extracted primary molars with cavitated lesions were randomly divided into four groups, each comprising seven samples.

View Article and Find Full Text PDF

The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.

View Article and Find Full Text PDF

Objectives: Comparative evaluation of indirect pulp therapy (IPT) with silver diamine fluoride (SDF), Type VII glass ionomer cement (GIC), and calcium hydroxide (Ca(OH)2) in young permanent molars.

Materials And Methods: This was randomized controlled trial, in which 45 children with 60 young permanent first molars were allocated as; Group A: IPT with SDF, Group B: Type VII GIC, and Group C: Ca(OH)2. Clinical and radiographic evaluation and comparison was done at baseline, 3, 6, 12 months.

View Article and Find Full Text PDF

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Background: Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!