Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219759 | PMC |
http://dx.doi.org/10.3390/antiox11061162 | DOI Listing |
Biol Res
December 2024
Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.
NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site.
View Article and Find Full Text PDFAntioxid Redox Signal
September 2024
Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, People's Republic of China.
Antioxidants (Basel)
May 2024
Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain.
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health.
View Article and Find Full Text PDFInt Immunopharmacol
June 2024
Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, China. Electronic address:
Geranylgeranylacetone (GGA), an isoprenoid compound widely utilized as an antiulcer agent in Asia, confers protection against ischemia, anoxia, and oxidative stress by rapidly enhancing the expression of HSP70. Nevertheless, the impact of GGA on sepsis-associated intestinal injury remains unexplored. Thus, this study is crafted to elucidate the protective efficacy and underlying mechanisms of GGA against septic intestinal damage.
View Article and Find Full Text PDFSci Rep
May 2024
Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!