AI Article Synopsis

  • Antibiotic pollution has become a major concern due to its harmful effects, prompting the study of a new photocatalyst called BiSnO/PDIH that effectively degrades norfloxacin, an antibiotic.
  • The photocatalyst achieved a remarkable 98.71% degradation of norfloxacin in just 90 minutes under visible light, with an apparent rate constant significantly higher than its individual components.
  • Additionally, the study revealed that BiSnO/PDIH maintained high effectiveness in treating antibiotics even in natural water, highlighting its potential for use in real-world water treatment applications.

Article Abstract

The severe pollution caused by antibiotics has prompted considerable concerns in recent decades. In this study, the BiSnO/PDIH Z-scheme heterojunction photocatalyst was synthesized and highly photocatalytic activity on norfloxacin was obtained. The degradation of norfloxacin reached 98.71% in 90 min under visible light. The apparent rate constant of norfloxacin (0.4 903 min) was 3.65 and 20 times that of PDIH and the BiSnO. Meanwhile, XPS, electrochemical, Photoluminescence spectroscopy and electron paramagnetic resonance results showed that Z-scheme charge-transfer process facilitated the spatial carrier separation and preserve redox capability. Furthermore, the degradation intermediates of norfloxacin and their toxicities were evaluated. Finally, in the view of the survey about the impact of different water matrices, it was found that the BiSnO/PDIH maintained high efficiency in raw natural water. This work enriched inorganic/organic heterojunction engineering for PDIH, and provided the enormous potential for combining the BiSnO with PDIH to address the antibiotic pollution issues in the actual water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129317DOI Listing

Publication Analysis

Top Keywords

degradation norfloxacin
8
bisno/pdih z-scheme
8
z-scheme heterojunction
8
norfloxacin
5
highly efficient
4
efficient photocatalytic
4
photocatalytic degradation
4
norfloxacin bisno/pdih
4
heterojunction influence
4
influence mechanism
4

Similar Publications

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

In situ self-cleaning removal of emerging organic contaminants with covalent organic framework armed with arylbiguanide.

J Hazard Mater

January 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China. Electronic address:

An in situ self-cleaning covalent organic framework featuring arylbiguanide arms (Aryl-BIG-COF) was first developed to remove emerging organic pollutants such as propranolol (PRO) from water. The main breakthroughs addressed the scarcity of functional active sites, the impracticality of ex situ regeneration, and the rapid recombination of electronhole pairs in the application of COFs. Owing to the directional capture ability and electronic structure regulation of the arylbiguanide arms, the adsorption capacity and photocatalytic degradation rate of the newly synthesized COF increased by nearly four and seven times, respectively.

View Article and Find Full Text PDF

The rational design of heterojunction photocatalysts enabling fast transportation and efficient separation of photoexcited charge carriers is the key element in visible light-driven photocatalyst systems. Herein, we develop a unique Z-scheme heterojunction consisting of NiMoO microflowers (NMOF) and ZIF67, referred to as ZINM (composite), for the purpose of antibiotic degradation. ZIF67 was produced by a solution process, whereas NMOF was synthesized via coprecipitation with a glycine surfactant.

View Article and Find Full Text PDF

Phytol is a diterpene from the long-chain unsaturated acyclic alcohols, known for its diverse biological effects, including antimicrobial and anti-inflammatory activities. Present in essential oils, phytol is a promising candidate for various applications in the pharmaceutical and biotechnological sectors. This study aimed to evaluate the antibacterial and drug-potentiating effects of phytol against multidrug-resistant bacteria and to evaluate its properties: ADME and molecular docking.

View Article and Find Full Text PDF

Removal of mixed antibiotics from saline wastewater under intermittent electrical stimulation and alterations of microbial communities and resistance genes.

Environ Res

January 2025

Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, PR China; Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, PR China.

Antibiotics and antibiotic resistance genes (ARGs) are severe refractory pollutants in water. However, the effect of an intermittent electrical stimulation on the removal of antibiotics and ARGs from saline wastewater remains unclear. An anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) was used to treat tetracyclines (TCs) and quinolones (QNs) in saline wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!