Mesoporous carbons (MCs) exhibit excellent removal efficiencies to various organic chemicals. However, how the properties of chemicals influence the adsorption mechanisms and further determine their adsorption onto MCs are poorly understood. We investigated the adsorption of 22 sulfonamides (SAs) onto four MCs, and further uncovered the major molecular descriptors and adsorption mechanisms influencing the adsorption by density functional theory (DFT) and partial least-squares path modeling (PLS-PM). The results revealed that the excess molar refraction (E), McGowan's molar volume (V), energy of the highest occupied molecular orbital (E), hardness (H), and most positive net charge on carbon atom (Q) were identified as the indirect factors affecting the distribution coefficient (logK), by influencing the BE(π-π), BE(H), and logK. BE(π-π) and logK displayed significant direct impacts on logK (p < 0.05), while BE(H) showed insignificant direct influences on logK (p > 0.05). The PLS-PM results indicate the main driving forces for SAs adsorption including π-π interactions, hydrophobic effects, and hydrogen bonding. This study provides a new perspective on revealing the adsorption mechanisms, and the identified factors can be used to develop the quantitative model to further predict the adsorption of SAs onto MCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129299 | DOI Listing |
Langmuir
January 2025
Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology (China University of Geosciences), Wuhan 430074, China.
The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFACS Nano
January 2025
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties.
View Article and Find Full Text PDFFood Chem
January 2025
Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China,. Electronic address:
Baked milk is subjected to prolonged high-temperature processing, which often undermines its dispersion stability. While carrageenan is known to inhibit milk demixing, its role in stabilizing heat-induced protein aggregates remains inadequately understood. In this study, we isolated casein micelles (CM), whey protein-casein aggregates (WPCA), and whey protein aggregates (WPA) from baked milk through centrifugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!