The biofilm resistance of microorganisms has severe economic and environmental implications, especially the contamination of facilities associated with human life, including medical implants, air-conditioning systems, water supply systems, and food-processing equipment, resulting in the prevalence of infectious diseases. Once bacteria form biofilms, their antibiotic resistance can increase by 10-1,000-fold, posing a great challenge to the treatment of related diseases. In order to overcome the contamination of bacterial biofilm, destroying the biofilm's matrix so as to solve the penetration depth dilemma of antibacterial agents is the most effective way. Here, a magnetically controlled multifunctional micromotor was developed by using HO as the fuel and MnO as the catalyst to treat bacterial biofilm infection. In the presence of HO, the as-prepared motors could be self-propelled by the generated oxygen microbubbles. Thereby, the remotely controlled motors could drill into the EPS of biofilm and disrupt them completely with the help of bubbles. Finally, the generated highly toxic •OH could efficiently kill the unprotected bacteria. This strategy combined the mechanical damage, highly toxic •OH, and precise magnetic guidance in one system, which could effectively eliminate biologically infectious fouling in microchannels within 10 min, possessing a wide range of practical application prospects especially in large scale and complex infection sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.129210 | DOI Listing |
Curr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University.
MRSA's resistance poses a global health challenge. This study investigates lysine succinylation in MRSA using proteomics and bioinformatics approaches to uncover metabolic and virulence mechanisms, with the goal of identifying novel therapeutic targets. Mass spectrometry and bioinformatics analyses mapped the MRSA succinylome, identifying 8 048 succinylation sites on 1 210 proteins.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guizhou University, State Key Laboratory of Green Pesticide, Center for Research and Development of Fine Chemicals, Huaxi, 550025, Guiyang, CHINA.
Clavibacter michiganensis (Cmm), designated as an A2 quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO), incites bacterial canker of tomato, which presently eludes rapid and effective control methodologies. Dense biofilms formed by Cmm shield internal bacteria from host immune defenses and obstruct the ingress of agrochemicals. Even when agrochemicals disintegrate biofilms, splashing and bouncing during application disperse active ingredients away from target sites.
View Article and Find Full Text PDFSci Rep
January 2025
Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!