A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorptive removal of gas phase naphthalene on ordered mesoporous carbon. | LitMetric

AI Article Synopsis

  • A study was conducted on the use of ordered mesoporous carbon (OMC) for removing low concentrations of naphthalene from enclosed spaces, involving both molecular simulations and experimental investigations.
  • Results indicated that as the pore size of the OMC increased from 2 nm to 8 nm, both the adsorption capacity and stability for naphthalene decreased.
  • The prepared OMCs had slightly different characteristics compared to simulated OMCs, with a rough surface leading to poorer adsorption performance at smaller pore sizes, while the 4 nm pore size OMC showed the best performance, unaffected by the presence of other compounds like toluene and acetone.

Article Abstract

Adsorptive removal of gas phase low concentration macromolecular organic component, represented by naphthalene, from the enclosed space using ordered mesoporous carbon (OMC) has been studied by molecular simulation and experimental investigation. The simulation results indicated that both adsorption capacity and adsorption stability of the OMCs for naphthalene decreased with the increase of pore sizes from 2 nm to 8 nm. Characterizations showed that the prepared OMCs had the pore structure similar to the simulated OMCs except for the rough surface. In particular, the adsorption performance of the prepared OMCs was significantly lower than that of the simulated OMCs when pore size was 2 nm and 3 nm, which was attributed to the rough inner surface of these adsorbents, blocking the narrow pore channels and significantly reducing the pore volume. OMC with pore size of 4 nm had the highest adsorption amount for naphthalene. The co-adsorption experiments in the presence of both naphthalene and toluene, acetone or water showed the adsorption performance of OMCs for naphthalene were almost unaffected by the presence of low concentration toluene and acetone, as well as high relative humidity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129208DOI Listing

Publication Analysis

Top Keywords

adsorptive removal
8
removal gas
8
gas phase
8
ordered mesoporous
8
mesoporous carbon
8
low concentration
8
omcs naphthalene
8
prepared omcs
8
omcs pore
8
simulated omcs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!