AI Article Synopsis

  • Flue dust from secondary copper smelting is a hazardous waste but also contains valuable metals like Pb, Cu, Zn, and Cd.
  • A combined process of low-temperature roasting, water leaching, and mechanochemical reduction was developed to recover these metals efficiently while minimizing environmental impact.
  • Thermodynamic analysis showed that adding HSO helps lower roasting temperatures and allows for the effective removal of Cl and Br, while the process successfully leaches Cu, Zn, and Cd with minimal Pb loss.

Article Abstract

Flue dust from secondary copper smelting (FDSC) is a hazardous waste as well as a secondary resource due to the high content of Cl, Br, and valuable metals (Pb, Cu, Zn, Cd). Herein, a novel process, combined low-temperature roasting, water leaching, and mechanochemical reduction, was developed for recovering metals from the FDSC. The phase conversion and behavior of the main elements in the whole process were explored based on thermodynamic analysis, experimental research, and various characterization. First, thermodynamics calculation revealed that adding HSO could significantly decrease the roasting temperature and promote the generation of soluble metal sulfates. The experimental results showed that more than 99% of Cl and Br were removed by roasting at 325 °C and 1.5 times HSO addition. Subsequently, the Cu, Zn, and Cd were almost completely leached by water under the conditions of 80 ℃, 2 h and L/S = 5 mL·g, while Pb was rejected and enriched in the residue. Finally, using iron powder as a reductant, 96.7% of PbSO was reduced to elemental lead at room temperature with the aid of mechanical force. The findings illustrated that the recovery performance of metals and environmental benefits will be greatly improved by the proposed process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128497DOI Listing

Publication Analysis

Top Keywords

recovering metals
8
flue dust
8
secondary copper
8
copper smelting
8
novel process
8
roasting water
8
water leaching
8
leaching mechanochemical
8
mechanochemical reduction
8
metals flue
4

Similar Publications

The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!